Home
Class 12
MATHS
Let lamdax – 2y =mu be a tangent to the...

Let `lamdax – 2y =mu` be a tangent to the hyperbola `a^2x^2 - y^2=b^2`. Then `(lamda/a)^2 -(mu/b)^2` is equal to :

A

`-2`

B

`-4`

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((\frac{\lambda}{a})^2 - (\frac{\mu}{b})^2\) given that \(\lambda x - 2y = \mu\) is a tangent to the hyperbola defined by \(a^2 x^2 - y^2 = b^2\). ### Step-by-Step Solution: 1. **Rewrite the Tangent Equation**: The tangent line can be expressed as: \[ \lambda x - 2y = \mu \] Rearranging gives: \[ 2y = \lambda x - \mu \quad \Rightarrow \quad y = \frac{\lambda}{2} x - \frac{\mu}{2} \] Here, the slope \(m\) of the tangent is: \[ m = \frac{\lambda}{2} \] 2. **Use the Slope Form of the Hyperbola**: The slope form of the tangent to the hyperbola \(a^2 x^2 - y^2 = b^2\) is given by: \[ y = mx \pm \sqrt{b^2(1 + m^2)} \] Substituting \(m = \frac{\lambda}{2}\): \[ y = \frac{\lambda}{2} x \pm \sqrt{b^2\left(1 + \left(\frac{\lambda}{2}\right)^2\right)} \] 3. **Equate the Two Expressions for y**: Since both expressions represent the same line, we can equate them: \[ \frac{\lambda}{2} x - \frac{\mu}{2} = \frac{\lambda}{2} x \pm \sqrt{b^2\left(1 + \left(\frac{\lambda}{2}\right)^2\right)} \] This implies: \[ -\frac{\mu}{2} = \pm \sqrt{b^2\left(1 + \left(\frac{\lambda}{2}\right)^2\right)} \] 4. **Square Both Sides**: Squaring both sides gives: \[ \left(-\frac{\mu}{2}\right)^2 = b^2\left(1 + \left(\frac{\lambda}{2}\right)^2\right) \] Simplifying: \[ \frac{\mu^2}{4} = b^2 + b^2\left(\frac{\lambda^2}{4}\right) \] 5. **Rearranging the Equation**: Rearranging gives: \[ \frac{\mu^2}{4} - b^2 = \frac{b^2\lambda^2}{4} \] Multiplying through by 4: \[ \mu^2 - 4b^2 = b^2\lambda^2 \] 6. **Divide by \(b^2\)**: Dividing the entire equation by \(b^2\) gives: \[ \frac{\mu^2}{b^2} - 4 = \frac{\lambda^2}{b^2} \] 7. **Rearranging to Find the Desired Expression**: Rearranging gives: \[ \frac{\lambda^2}{b^2} = \frac{\mu^2}{b^2} - 4 \] Therefore: \[ \left(\frac{\lambda}{a}\right)^2 - \left(\frac{\mu}{b}\right)^2 = 4 \] ### Final Answer: \[ \left(\frac{\lambda}{a}\right)^2 - \left(\frac{\mu}{b}\right)^2 = 4 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics-Section B|50 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION A)|20 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos
  • JEE MAINS 2023 JAN ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|360 Videos

Similar Questions

Explore conceptually related problems

If the line y=2x+lambda be a tangent to the hyperbola 36x^(2)-25y^(2)=3600 , then lambda is equal to

If y=mx+4 is a tangent to both the parabolas, y^(2)=4x and x^(2)=2by , then b is equal to :

Let a line L : 2x + y = k, k gt 0 be a tangent to the hyperbola x^(2) - y^(2) = 3 . If L is also a tangent to the parabola y^(2) = alpha x , then alpha is equal to

Find the common tangents to the hyperbola x^(2)-2y^(2)=4 and the circle x^(2)+y^(2)=1

Find the locus of a point such that the angle between the tangents from it to the hyperbola x^(2)/a^(2) - y^(2)/b^(2) = 1 is equal to the angle between the asymptotes of the hyperbola .

The equations (s) to common tangent (s) to the two hyperbola x^(2)/a^(2) - y^(2)/b^(2) = 1 " and " y^(2)/a^(2) - x^(2)/b^(2) = 1 is /are

If the eccentricity of the hyperbola (x^(2))/(16)-(y^(2))/(b^(2))=-1 is (5)/(4) , then b^(2) is equal to