Home
Class 12
MATHS
Let A be a 3xx3 invertible matrix. If |a...

Let A be a `3xx3` invertible matrix. If `|adj(24A)|=|adj(3adj(2A))|`, then `|A|^(2)` is equal to :

A

`6^(6)`

B

`2^(12)`

C

`2^(6)`

D

1

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A be a 3xx3 real matrix. If det(2 Adj(2 Adj(Adj (2A)))) = 2^(41) , then the value of det (A^2) equals _______

For a invertible matrix A if A (adj A) =[(10,0),(0,10)] then |A|=

A is a 3times3 matrix and |A|=2 then |adj(adj(adjA))| =

If A=adj A, then |A| is equal to (A is invertible)

If A is a 3xx3 such that |5.adj(A)|=5 then |A| is equal to

If A=[{:(3,2),(1,4):}] then A. adj A is equal to :

If A is an invertible matrix of order 3 and |A|=5, then find |adj.A|.

If A is an invertible matrix of order n then determinant of adj(A) is equal to

If A is a 3xx3 non-singular matrix,then |A^(-1)adj(A)| is

If A be a square matrix of order 3, such that |A|=sqrt5 , then |Adj(-3A^(-2))| is equal to