Home
Class 12
MATHS
Let f, g:R rarrR be two real valuted fun...

Let `f, g:R rarrR` be two real valuted functions defined as `f(x)={{:(-|x+3|,xlt0),(e^(x),xge0):}}``g(x)={{:(x^2+k_1(x),xlt0),(4x+k_2,xge0):}}` if (gof) is differentiable at `x=0`, then `(gof)(-4)+(gof)(4)` is equal to :

A

`4(e^(4)+1)`

B

`2(2e^(4)+1)`

C

`4e^(4)`

D

`2(2e^(4)-1)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x){:{(1+sinx", "xlt0),(x^(2)-x+1ge0):} Then

Given f(x)={2x,xlt0, 0,xge0}"then "f(x) is

Discuss the continuity of the function : f(x)={{:(x",if "xge0),(x^(2)",if "xlt0):}

Let f and g be real valued functions defined as f(x)={{:(7x^(2)+x-8",",xle 1),(4x+5",",1lt x le 7),(8x+3",",x gt7):} " " g(x)={{:(|x|",",xlt -3),(0",",-3le x lt 2),(x^(2)+4",",xge 2):} The value of (gof) (0) + (fog) (-3) is

Let f and g be real valued functions defined as f(x)={{:(7x^(2)+x-8",",xle 1),(4x+5",",1lt x le 7),(8x+3",",x gt7):} " " g(x)={{:(|x|",",xlt -3),(0",",-3le x lt 2),(x^(2)+4",",xge 2):} The value of 4(gof) (2) - (fog) (9) is

Let f and g be real valued functions defined as f(x)={{:(7x^(2)+x-8",",xle 1),(4x+5",",1lt x le 7),(8x+3",",x gt7):} " " g(x)={{:(|x|",",xlt -3),(0",",-3le x lt 2),(x^(2)+4",",xge 2):} The value of 2(fog) (7) - (gof) (6) is

Draw the graph of the modulus function, defined by f:RtoR:f(x)=|x|={{:(x",when "xge0),(-x",when "xlt0):}

Show that the function f(x)={:{(3+x", " xge0),(3-x", " x lt 0):} is not differentiable at x=0

Let f :R to R and g : R rightarrow R be defined as f(x)={(log_e x, x gt 0), (e^(-x), x le 0):} , g(x) ={(x, x ge 0), (e^x , x lt 0):} . Then gof : R rightarrow R is: