Home
Class 12
MATHS
Let f(x)=max{|x+1|,|x+2|,....,|x+5|}. Th...

Let `f(x)=max{|x+1|,|x+2|,....,|x+5|}`. Then `underset(-6)overset(0)intf(x)dx` is equal to ________.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={{:(x,xlt1),(x-1,xge1):} , then underset(0)overset(2)intx^(2)f(x) dx is equal to :

If intf(x)dx=g(x), then intf(x)g(x)dx is equal to

If f(x)=x, g(x)=sinx, then intf[g(x)]dx is equal to

If {x} represents the fractional part of then underset(0)overset(9)(f){sqrt(x)}dx is equal to

Let f(x)=max*{|x^(2)-2|x||,|x|} then number of points where f(x) is non derivable, is :

If intf(x)dx=g(x),then intx^(11)f(x^(6))dx is equal to

If f(x) =|{:(cosx,1,0),(1,2 cosx,1),(0,1,2 cosx):}|, "then" |overset(pi//2)underset(0)intf(x)dx| is equal to