Home
Class 12
MATHS
The value of the integral (48)/(pi^(4))u...

The value of the integral `(48)/(pi^(4))underset(0)overset(pi)int((3pix^(2))/(2)-x^(3))(sinx)/(1+cos^(2)x)dx` is equal to _______ .

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//6)(sinx)/(cos^(3)x) dx is equal to

int_(-pi//2)^(pi//2)(sinx)/(1+cos^(2)x)e^(-cos^(2)x)dx is equal to

int_(0)^(pi//2)(sinx)/((1+cos^(2)x))dx

The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

Evaluate the following definite integrals underset(0)overset(pi//4)int(dx)/(1+cos2x)

The value of int_(-pi)^(pi)(2x(1+sinx))/(1+cos^(2)x)dx is

int_(-pi//4)^(pi//4)(e^(x)(x^(3)sinx))/(e^(2x)-1)dx equals

The valueof int_((pi)/(6))^((pi)/(3))e^(sec^(2)x)(sinx)/(cos^(3)x)dx is equal to

Evaluate the following definite integrals underset(0)overset(pi//2)int(1+sinx)^(3)cosxdx