Home
Class 12
MATHS
If x=sum(n=0)^(oo)a^n,y=sum(n=0)^(oo)b^n...

If `x=sum_(n=0)^(oo)a^n,y=sum_(n=0)^(oo)b^n,z=sum_(n=0)^(oo)c^n` where a, b, c are in A.P. and `|a| lt 1, |b| lt 1, |c| lt 1 , abc ne 0` then

A

x, y, z are in A.P.

B

x, y, z are in G.P.

C

`1/x , 1/y, 1/z` are in A.P.

D

`1/x+ 1/y + 1/z =1(a+b +c)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics-Section B|50 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION A)|20 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos
  • JEE MAINS 2023 JAN ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|360 Videos

Similar Questions

Explore conceptually related problems

If x = sum_(n=0)^(oo) a^(n), y=sum_(n=0)^(oo) b^(n), z = sum_(n=0)^(oo) C^(n) where a,b,c are in A.P. and |a| lt 1, |b| lt 1, |c| lt 1 , then x,y,z are in

If x=sum_(n=0)^(oo) a^(n),y=sum_(n=0)^(oo)b^(n),z=sum_(n=0)^(oo)(ab)^(n) , where a,blt1 , then

If x=sum_(n=0)^oo a^n, y=sum_(n=0)^oo b^n, z=sum_(n=0)^oo c^n where a,b,c are in A.P and |a|<1, |b<1, |c|<1, then x,y,z are in

If x=Sigma_(n=0)^(oo) a^n,y=Sigma_(n=0)^(oo) b^n,z=Sigma_(n=0)^(oo) c^n where a, b,and c are in A.P and |a|lt 1 ,|b|lt 1 and |c|1 then prove that x,y and z are in H.P

If quad sum_(n=0)^(oo)a^(n),y=sum_(n=0)^(oo)b^(n),z=sum_(n=0)^(oo)c^(n), wherer a,b, and c are in A.P.and |a|<,|b|<1, and |c|<1, then prove that x,y and z are in H.P.

If a=sum_(n=0)^(oo)x^(n),b=sum_(n=0)^(oo)y^(n),c=sum_(n=0)^(oo)(xy)^(n) where |x|,|y|<1 then

If a=sum_(n=0)^(oo)x^(n),b=sum_(n=0)^(oo)y^(n),c=sum_(n=0)^(oo)(xy)^(n) where |x|,|y|<1 then

If a,b,c are proper fractiion are in H.P. and x sum_(n=1)^oo a^n, y=sum_(n=1)^oo b^n, z= sum_(n=1)^oo c^n then x,y,z are in (A) A.P. (B) G.P. (C) H.P. (D) none of these