Home
Class 12
MATHS
If bn=int0^(pi/2) (cos^2nx)/sinx dx then...

If `b_n=int_0^(pi/2) (cos^2nx)/sinx dx` then

A

`b_3 - b_2, b_4 – b_3, 6_5 – b_4` are in an A.P. with common difference -2

B

`1/(b_3-b_2),1/(b_4-b_3),1/(b_5-b_4)` are in an A.P. with common difference 2

C

`b_3-b_2 , b_4 -b_3 , b_5-b_4` are in a G.P.

D

`1/(b_3-b_2),1/(b_4-b_3),1/(b_5-b_4)` are in an A.P. with common difference -2

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics-Section B|50 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION A)|20 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos
  • JEE MAINS 2023 JAN ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|360 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/2) cosx/(1+sinx)dx

int_0^(pi/2) cosx/sqrt(1+sinx)dx

If rArrI_(n)= int_(a)^(a+pi//2)(cos^(2)nx)/(sinx) dx, "then" I_(2)-I_(1),I_(3)-I_(2),I_(4)-I_(3) are in

int_0^(pi/2) (sinx)/(1+Cos^2x)dx

int_0^(pi/2) (Cosx - Sinx)dx