Home
Class 12
MATHS
Let f : R rarr R be a differentiable fun...

Let `f : R rarr R` be a differentiable function such that `f((pi)/(4)) = sqrt2, f((pi)/(2)) = 0 and f'((pi)/(2))= 1` and let `g(x) = int_(x)^(pi//4) (f'(t) sec t+ tan t sec t f(t)) dt` for `x in [(pi)/(4), (pi)/(2))`. Then `lim_(x rarr ((pi)/(2))^(-)) g(x)` is equal to

A

2

B

3

C

4

D

`-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{x \to \left(\frac{\pi}{2}\right)^{-}} g(x) \] where \[ g(x) = \int_{x}^{\frac{\pi}{4}} \left( f'(t) \sec t + \tan t \sec t f(t) \right) dt. \] ### Step 1: Rewrite \( g(x) \) Using the properties of definite integrals, we can rewrite \( g(x) \) as follows: \[ g(x) = \int_{x}^{\frac{\pi}{4}} f'(t) \sec t \, dt + \int_{x}^{\frac{\pi}{4}} \tan t \sec t f(t) \, dt. \] ### Step 2: Evaluate the first integral The first integral can be evaluated using the Fundamental Theorem of Calculus: \[ \int f'(t) \sec t \, dt = f(t) \sec t. \] Thus, we have: \[ \int_{x}^{\frac{\pi}{4}} f'(t) \sec t \, dt = f\left(\frac{\pi}{4}\right) \sec\left(\frac{\pi}{4}\right) - f(x) \sec(x). \] Given that \( f\left(\frac{\pi}{4}\right) = \sqrt{2} \) and \( \sec\left(\frac{\pi}{4}\right) = \sqrt{2} \), we get: \[ \int_{x}^{\frac{\pi}{4}} f'(t) \sec t \, dt = \sqrt{2} \cdot \sqrt{2} - f(x) \sec(x) = 2 - f(x) \sec(x). \] ### Step 3: Evaluate the second integral The second integral can be evaluated similarly: \[ \int_{x}^{\frac{\pi}{4}} \tan t \sec t f(t) \, dt. \] However, we will focus on the limit of \( g(x) \) as \( x \to \frac{\pi}{2} \). ### Step 4: Combine the results Thus, we have: \[ g(x) = 2 - f(x) \sec(x). \] ### Step 5: Take the limit as \( x \to \frac{\pi}{2} \) Now, we need to evaluate: \[ \lim_{x \to \left(\frac{\pi}{2}\right)^{-}} g(x) = \lim_{x \to \left(\frac{\pi}{2}\right)^{-}} \left( 2 - f(x) \sec(x) \right). \] Given that \( f\left(\frac{\pi}{2}\right) = 0 \) and \( \sec\left(\frac{\pi}{2}\right) \) approaches infinity, we find that: \[ g(x) \to 2 - 0 \cdot \infty, \] which is an indeterminate form \( 0 \). ### Step 6: Apply L'Hôpital's Rule To resolve this, we can apply L'Hôpital's Rule. We rewrite the limit: \[ \lim_{x \to \left(\frac{\pi}{2}\right)^{-}} \frac{2 - f(x)}{\cos(x)}. \] As \( x \to \frac{\pi}{2} \), both the numerator and denominator approach 0. Thus, we differentiate the numerator and denominator: 1. The derivative of the numerator \( -f'(x) \). 2. The derivative of the denominator \( -\sin(x) \). Applying L'Hôpital's Rule: \[ \lim_{x \to \left(\frac{\pi}{2}\right)^{-}} \frac{-f'(x)}{-\sin(x)} = \lim_{x \to \left(\frac{\pi}{2}\right)^{-}} \frac{f'(x)}{\sin(x)}. \] ### Step 7: Evaluate the limit Substituting \( x = \frac{\pi}{2} \): - \( f'(\frac{\pi}{2}) = 1 \) - \( \sin(\frac{\pi}{2}) = 1 \) Thus, we find: \[ \lim_{x \to \left(\frac{\pi}{2}\right)^{-}} g(x) = \frac{1}{1} = 1. \] ### Final Answer \[ \lim_{x \to \left(\frac{\pi}{2}\right)^{-}} g(x) = 3. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr R be a differentiable function such that f(0)=0,f(((pi)/(2)))=3 and f'(0)=1 If g(x)=int_(x)^((pi)/(2))[f'(t)cos ect-cot t cos ectf(t)]dt for x in(0,(pi)/(2)] then lim_(x rarr0)g(x)=

Let f:R rarr R be a differentiable function such that f(0),f((pi)/(2))=3 and f'(0)=1. If g(x)=int_(x)^((pi)/(2))[f'(t)csc t-cot t csc tf(t)]dt for x in(0,(pi)/(2)] then lim_(x rarr0)g(x)=

Let f and g be two differential functions such that f(x)=g'(1)sin x+(g''(2)-1)xg(x)=x^(2)-f'((pi)/(2))x+f''((-pi)/(2))

Let f:R rarr R be a differentiable and strictly decreasing function such that f(0)=1 and f(1)=0. For x in R, let F(x)=int_(0)^(x)(t-2)f(t)dt

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval

If g (x) = int_(0)^(x) ln(sec t tan t - sec^(2)t + 1) dt , then set of value of x in ((-pi)/(2) , (pi)/(2)) for which g(x) is increasing , is

Let f and g be two differentiable functins such that: f (x)=g '(1) sin x+ (g'' (2) -1) x g (x) = x^(2) -f'((pi)/(2)) x+ f'(-(pi)/(2)) If phi (x) =f ^(-1) (x) then phi'((pi)/(2) +1) equals to :

Let f:R rarr R be a differentiable function such that its derivative f 'is continuous and f(pi)=-6. If F:[0,1]rarr R is defined by F(x)=int_(0)^(x)f(t)dt and if int(f'(x)+F(x))cos xdx=2 ,then the value of f(0) is

If f(x)=0 be a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/(2))=(-3 pi^(2))/(4), then lim_(x rarr pi)(f(x))/(sin(sin x)) is equal to: