Home
Class 12
MATHS
Let vec(a) = alpha hat(i) + 2hat(j) - h...

Let `vec(a) = alpha hat(i) + 2hat(j) - hat(k) and vec(b) = -2 hat(i) + alpha hat(j) + hat(k)`, where `alpha in R`. If the area of the parallelogram whose adjacent sides are represented by the vectors `vec(a) and vec(b)` is `sqrt(15 (alpha^(2)+ 4))`, then the value of `2|vec(a)|^(2) + (vec(a).vec(b))|vec(b)|^(2)` is equal to

A

10

B

7

C

9

D

14

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 2|\vec{a}|^2 + (\vec{a} \cdot \vec{b}) |\vec{b}|^2 \) given the vectors \( \vec{a} \) and \( \vec{b} \) and the area of the parallelogram formed by these vectors. ### Step 1: Define the vectors Given: \[ \vec{a} = \alpha \hat{i} + 2 \hat{j} - \hat{k} \] \[ \vec{b} = -2 \hat{i} + \alpha \hat{j} + \hat{k} \] ### Step 2: Calculate the cross product \( \vec{a} \times \vec{b} \) The area of the parallelogram is given by the magnitude of the cross product \( |\vec{a} \times \vec{b}| \). Using the determinant method: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \alpha & 2 & -1 \\ -2 & \alpha & 1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 2 & -1 \\ \alpha & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} \alpha & -1 \\ -2 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} \alpha & 2 \\ -2 & \alpha \end{vmatrix} \] \[ = \hat{i} (2 \cdot 1 - (-1) \cdot \alpha) - \hat{j} (\alpha \cdot 1 - (-1) \cdot -2) + \hat{k} (\alpha^2 + 4) \] \[ = \hat{i} (2 + \alpha) - \hat{j} (\alpha - 2) + \hat{k} (\alpha^2 + 4) \] Thus, \[ \vec{a} \times \vec{b} = (2 + \alpha) \hat{i} - (\alpha - 2) \hat{j} + (\alpha^2 + 4) \hat{k} \] ### Step 3: Calculate the magnitude of the cross product \[ |\vec{a} \times \vec{b}| = \sqrt{(2 + \alpha)^2 + (-(\alpha - 2))^2 + (\alpha^2 + 4)^2} \] \[ = \sqrt{(2 + \alpha)^2 + (\alpha - 2)^2 + (\alpha^2 + 4)^2} \] ### Step 4: Set the area equal to the given expression The area is given as: \[ \sqrt{15(\alpha^2 + 4)} \] Thus, \[ \sqrt{(2 + \alpha)^2 + (\alpha - 2)^2 + (\alpha^2 + 4)^2} = \sqrt{15(\alpha^2 + 4)} \] ### Step 5: Square both sides Squaring both sides gives: \[ (2 + \alpha)^2 + (\alpha - 2)^2 + (\alpha^2 + 4)^2 = 15(\alpha^2 + 4) \] ### Step 6: Expand and simplify Expanding the left-hand side: \[ (2 + \alpha)^2 = 4 + 4\alpha + \alpha^2 \] \[ (\alpha - 2)^2 = \alpha^2 - 4\alpha + 4 \] \[ (\alpha^2 + 4)^2 = \alpha^4 + 8\alpha^2 + 16 \] Combining: \[ 4 + 4\alpha + \alpha^2 + \alpha^2 - 4\alpha + 4 + \alpha^4 + 8\alpha^2 + 16 = 15\alpha^2 + 60 \] \[ \alpha^4 + 10\alpha^2 + 24 = 15\alpha^2 + 60 \] Rearranging gives: \[ \alpha^4 - 5\alpha^2 - 36 = 0 \] ### Step 7: Solve the quadratic in \( \alpha^2 \) Let \( x = \alpha^2 \): \[ x^2 - 5x - 36 = 0 \] Using the quadratic formula: \[ x = \frac{5 \pm \sqrt{25 + 144}}{2} = \frac{5 \pm 13}{2} \] Thus, \[ x = 9 \quad \text{or} \quad x = -4 \quad (\text{neglect since } x \geq 0) \] So, \( \alpha^2 = 9 \) implies \( \alpha = 3 \) or \( \alpha = -3 \). ### Step 8: Calculate \( 2|\vec{a}|^2 + (\vec{a} \cdot \vec{b})|\vec{b}|^2 \) Calculate \( |\vec{a}|^2 \): \[ |\vec{a}|^2 = \alpha^2 + 4 + 1 = 9 + 4 + 1 = 14 \] Thus, \[ 2|\vec{a}|^2 = 2 \cdot 14 = 28 \] Now calculate \( \vec{a} \cdot \vec{b} \): \[ \vec{a} \cdot \vec{b} = \alpha \cdot (-2) + 2 \cdot \alpha + (-1) \cdot 1 = -2\alpha + 2\alpha - 1 = -1 \] Calculate \( |\vec{b}|^2 \): \[ |\vec{b}|^2 = (-2)^2 + \alpha^2 + 1 = 4 + 9 + 1 = 14 \] Putting it all together: \[ 2|\vec{a}|^2 + (\vec{a} \cdot \vec{b})|\vec{b}|^2 = 28 + (-1) \cdot 14 = 28 - 14 = 14 \] ### Final Answer The value is: \[ \boxed{14} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a=hat i+alphahat j+3hat k and vec b=3hat i-alphahat j+hat k .If the area of the parallelogram whose adjacent sides are represented by the vectors vec a and vec b is 8sqrt(3) square units,then vec a*vec b is equal to

Find the area of the parallelogram whose adjacent sides are determined by the vectors vec a=hat i-hat j+3hat k and vec b=2hat i-hat 7hat j+hat k

If vec(a) = 3 hat(i) + hat(j) - 4 hat(k) , vec(b) = 6 hat(i) + 5 hat(j) - 2 hat(k) . Find (a) vec(a) xx vec(b) and (b) area of a triangle whose adjacent sides are dertermined by vec(a) and vec(b) .

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a)= hat(i) - 2hat(j) + 5hat(k), vec(b)= 2hat(i) +hat(j)- 3hat(k) then what is (vec(a)- vec(b)).(3 vec(a) +vec(b)) equal to ?

If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .

Let vec(A)=2hat(i)-3hat(j)+4hat(k) and vec(B)=4hat(i)+hat(j)+2hat(k) then |vec(A)xx vec(B)| is equal to