Home
Class 12
MATHS
Find the value of lim(n to oo) 6 tan{sum...

Find the value of `lim_(n to oo) 6 tan{sum_(r=1)^n tan^-1(1/(r^2+3r+3))}` is

A

1

B

2

C

3

D

6

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of lim_(n to oo) (tan(sum_(r=1)^(n) tan^(-1)((4)/(4r^(2)+3)))) .

The value of the lim_(n rarr oo)tan{sum_(r=1)^(n)tan^(-1)((1)/(2r^(2)))}_( is equal to )

lim_(nrarroo)tan(sum_(r=1)^ntan^(-1)(1/(r^2+r+1)))

The value of lim_(ntooo)sum_(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

lim_(n to oo)sum_(r=1)^(n)cot^(-1)(r^(2)+3//4) is

Find the value of lim_(n rarr oo)sum_(r=1)^(n)(r^(2))/(n^(3)+n^(2)+r)

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

Evaluate lim _( n to oo) sum_( r =1) ^(n -1) (1)/(sqrt(n ^(2) -r ^(2)))