Home
Class 12
MATHS
Let vec(a) be a vector which is perpendi...

Let `vec(a)` be a vector which is perpendicular to the vector `3 hat(i) + (1)/(2) hat(j) + 2hat(k)` `vec(a) xx (2 hat(i) + hat(k)) = 2hat(i)- 13hat(j)- 4hat(k)`, then the projection of the vector `vec(a)` on the vector `2hat(i) + 2hat(j) + hat(k)` is:

A

`(1)/(3)`

B

1

C

`(5)/(3)`

D

`(7)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow these steps: ### Step 1: Define the vector \(\vec{a}\) Let \(\vec{a} = x \hat{i} + y \hat{j} + z \hat{k}\). ### Step 2: Use the condition of perpendicularity Since \(\vec{a}\) is perpendicular to the vector \(3 \hat{i} + \frac{1}{2} \hat{j} + 2 \hat{k}\), we can use the dot product condition: \[ \vec{a} \cdot (3 \hat{i} + \frac{1}{2} \hat{j} + 2 \hat{k}) = 0 \] This gives us: \[ 3x + \frac{1}{2}y + 2z = 0 \quad \text{(Equation 1)} \] ### Step 3: Use the cross product condition We are also given that: \[ \vec{a} \times (2 \hat{i} + \hat{k}) = 2 \hat{i} - 13 \hat{j} - 4 \hat{k} \] Calculating the cross product: \[ \vec{a} \times (2 \hat{i} + \hat{k}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 2 & 0 & 1 \end{vmatrix} \] Expanding this determinant, we get: \[ \hat{i}(y \cdot 1 - z \cdot 0) - \hat{j}(x \cdot 1 - z \cdot 2) + \hat{k}(x \cdot 0 - y \cdot 2) = y \hat{i} - (x - 2z) \hat{j} - 2y \hat{k} \] Setting this equal to \(2 \hat{i} - 13 \hat{j} - 4 \hat{k}\), we have: \[ y = 2 \quad \text{(Equation 2)} \] \[ -(x - 2z) = -13 \implies x - 2z = 13 \quad \text{(Equation 3)} \] \[ -2y = -4 \implies y = 2 \quad \text{(Already known)} \] ### Step 4: Substitute \(y\) into Equation 1 Substituting \(y = 2\) into Equation 1: \[ 3x + \frac{1}{2}(2) + 2z = 0 \] This simplifies to: \[ 3x + 1 + 2z = 0 \implies 3x + 2z = -1 \quad \text{(Equation 4)} \] ### Step 5: Solve Equations 3 and 4 From Equation 3: \[ x = 13 + 2z \] Substituting this into Equation 4: \[ 3(13 + 2z) + 2z = -1 \] This expands to: \[ 39 + 6z + 2z = -1 \implies 8z = -40 \implies z = -5 \] Now substituting \(z = -5\) back into Equation 3: \[ x - 2(-5) = 13 \implies x + 10 = 13 \implies x = 3 \] ### Step 6: Write the vector \(\vec{a}\) Now we have: \[ \vec{a} = 3 \hat{i} + 2 \hat{j} - 5 \hat{k} \] ### Step 7: Find the projection of \(\vec{a}\) on \(2 \hat{i} + 2 \hat{j} + \hat{k}\) The projection formula is given by: \[ \text{proj}_{\vec{b}} \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \vec{b} \] where \(\vec{b} = 2 \hat{i} + 2 \hat{j} + \hat{k}\). Calculating the dot product: \[ \vec{a} \cdot \vec{b} = (3)(2) + (2)(2) + (-5)(1) = 6 + 4 - 5 = 5 \] Calculating the magnitude squared of \(\vec{b}\): \[ |\vec{b}|^2 = 2^2 + 2^2 + 1^2 = 4 + 4 + 1 = 9 \] ### Step 8: Calculate the projection Thus, the projection is: \[ \text{proj}_{\vec{b}} \vec{a} = \frac{5}{9} \vec{b} = \frac{5}{9}(2 \hat{i} + 2 \hat{j} + \hat{k}) = \frac{10}{9} \hat{i} + \frac{10}{9} \hat{j} + \frac{5}{9} \hat{k} \] ### Final Result The projection of the vector \(\vec{a}\) on the vector \(2 \hat{i} + 2 \hat{j} + \hat{k}\) is: \[ \frac{10}{9} \hat{i} + \frac{10}{9} \hat{j} + \frac{5}{9} \hat{k} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the projection of the vector hat(i)-2hat(j)-hat(k) on the vector 4hat(i)-4hat(j)+7hat(k) ?

Projection of the vector 2hat(i) + 3hat(j) + 2hat(k) on the vector hat(i) - 2hat(j) + 3hat(k) is :

Given the three vectors vec(a) = - 2hati + hat(j) + hat(k), vec(b) = hat(i) + 5hat(j) and vec(c) = 4hat(i) + 4hat(j) - 2hat(k) . The projection of the vector 3vec(a) - 2vec(b) on the vector vec(c) is

Find a vector of magnitude 6 which is perpendicular to both the vectors vec(a)= 4 hat(i)-hat(j) + 3 hat(k) and vec(b) = -2 hat(i) + hat(j)- 2 hat(k).

A unit vector perpendicular to each of the vectors 2hat(i) - hat(j) + hat(k ) and 3hat(i) - 4hat(i) - hat(k) is

Find a unit vector perpendicular to each one of the vectors vec(a) = 4 hat(i) - hat (j) + 3hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) .

Write the projection of the vector 2hat i-hat j+hat k on the vector vec b=hat i+2hat j+2hat k

The projection of vector vec(a)=2hat(i)+3hat(j)+2hat(k) on vec(b)=hat(i)+2hat(j)+hat(k) is :

Find a unit vector perpendicular to each one of the vectors vec(a)= ( 4 hat(i) - hat(j)+ 3 hat(k)) and vec(b)=(2hat(i) + 2 hat(j)- hat(k)).

The projection of the vector vec(A)= hat(i)-2hat(j)+hat(k) on the vector vec(B)= 4hat(i)-4hat(j)+7hat(k) is