Home
Class 12
MATHS
If cot alpha= 1 and sec beta = - (5)/(3)...

If `cot alpha= 1 and sec beta = - (5)/(3)`, where `pi lt alpha lt (3pi)/(2) and (pi)/(2) lt beta lt pi`, then the value of `tan (alpha + beta)` and the quadrant in which `alpha + beta` lies, respectively are:

A

`- (1)/(7) and IV^(th)` quadrant

B

`7 and I^(st)` quadrant

C

`-7 and IV^(th)` quadrant

D

`(1)/(7) and I^(st)` quadrant

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan(\alpha + \beta) \) given that \( \cot \alpha = 1 \) and \( \sec \beta = -\frac{5}{3} \), along with the specified ranges for \( \alpha \) and \( \beta \). ### Step 1: Determine the angle \( \alpha \) Given \( \cot \alpha = 1 \), we know that: \[ \tan \alpha = \frac{1}{\cot \alpha} = 1 \] The angle \( \alpha \) where \( \tan \alpha = 1 \) is \( \frac{\pi}{4} + n\pi \). Since \( \pi < \alpha < \frac{3\pi}{2} \), we take: \[ \alpha = \frac{5\pi}{4} \quad \text{(which is in the third quadrant)} \] ### Step 2: Determine the angle \( \beta \) Given \( \sec \beta = -\frac{5}{3} \), we can find \( \cos \beta \): \[ \cos \beta = -\frac{3}{5} \] Since \( \beta \) is in the second quadrant, we can find \( \sin \beta \) using the Pythagorean identity: \[ \sin^2 \beta + \cos^2 \beta = 1 \] Substituting for \( \cos \beta \): \[ \sin^2 \beta + \left(-\frac{3}{5}\right)^2 = 1 \\ \sin^2 \beta + \frac{9}{25} = 1 \\ \sin^2 \beta = 1 - \frac{9}{25} = \frac{16}{25} \\ \sin \beta = \frac{4}{5} \quad \text{(positive in the second quadrant)} \] ### Step 3: Calculate \( \tan \alpha \) and \( \tan \beta \) Now we can find \( \tan \alpha \) and \( \tan \beta \): \[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{1}{1} = 1 \quad \text{(from Step 1)} \] For \( \tan \beta \): \[ \tan \beta = \frac{\sin \beta}{\cos \beta} = \frac{\frac{4}{5}}{-\frac{3}{5}} = -\frac{4}{3} \] ### Step 4: Use the tangent addition formula Now we can use the formula for \( \tan(\alpha + \beta) \): \[ \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \] Substituting the values: \[ \tan(\alpha + \beta) = \frac{1 + \left(-\frac{4}{3}\right)}{1 - (1)(-\frac{4}{3})} \\ = \frac{1 - \frac{4}{3}}{1 + \frac{4}{3}} \\ = \frac{\frac{3}{3} - \frac{4}{3}}{\frac{3}{3} + \frac{4}{3}} \\ = \frac{-\frac{1}{3}}{\frac{7}{3}} \\ = -\frac{1}{7} \] ### Step 5: Determine the quadrant of \( \alpha + \beta \) Since \( \alpha = \frac{5\pi}{4} \) (third quadrant) and \( \beta \) is in the second quadrant, we can estimate \( \alpha + \beta \): \[ \alpha + \beta = \frac{5\pi}{4} + \beta \] Since \( \beta \) is between \( \frac{\pi}{2} \) and \( \pi \), we can estimate: \[ \frac{5\pi}{4} + \frac{\pi}{2} < \alpha + \beta < \frac{5\pi}{4} + \pi \\ \frac{5\pi + 2\pi}{4} < \alpha + \beta < \frac{5\pi + 4\pi}{4} \\ \frac{7\pi}{4} < \alpha + \beta < \frac{9\pi}{4} \] This implies that \( \alpha + \beta \) is in the fourth quadrant. ### Final Answer Thus, the value of \( \tan(\alpha + \beta) \) is \( -\frac{1}{7} \) and \( \alpha + \beta \) lies in the fourth quadrant.
Promotional Banner

Similar Questions

Explore conceptually related problems

If cot alpha=(1)/(2) , sec beta=(-5)/(3) where pi lt alpha lt (3pi)/2 and (pi)/(2) lt beta lt pi Find the value of tan(alpha +beta)

If cot alpha=(1)/(2),sec beta=-(5)/(3), where pi

If sin alpha = (-3)/(5), where pi lt alpha lt (3pi)/(2), then cos ((alpha)/(2))=

If cos alpha=-(3)/(5) and sin beta=(7)/(25) where (pi)/(2)

If cos alpha + cos beta + cos gamma = 0 , where 0 lt alpha le (pi)/(2),0 lt beta le (pi)/(2),0 lt gamma le (pi)/(2) . then what is the value of sin alpha + sin beta + sin gamma ?

If 13 sin alpha = 12, where pi//2 lt alpha lt pi, and 3 sec beta = 5, where 3pi//2 lt beta lt 2pi , evaluate : 5tan alpha+3 tan^(2)beta.