Home
Class 12
MATHS
If lim(x rarr 1) (sin (3x^(2) - 4x+1) -x...

If `lim_(x rarr 1) (sin (3x^(2) - 4x+1) -x^(2)+1)/(2x^(3)- 7x^(2)+ ax +b)= -2`, then the value of `(a-b)` is equal to ____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate the limit as \( x \) approaches 1 for the expression given in the question. Let's break it down step by step. ### Step 1: Substitute \( x = 1 \) First, we substitute \( x = 1 \) into the expression: \[ \lim_{x \to 1} \frac{\sin(3x^2 - 4x + 1) - x^2 + 1}{2x^3 - 7x^2 + ax + b} \] Calculating the numerator: \[ 3(1)^2 - 4(1) + 1 = 3 - 4 + 1 = 0 \] \[ 1^2 - 1 = 0 \] So, the numerator becomes: \[ \sin(0) - 0 = 0 \] Now for the denominator: \[ 2(1)^3 - 7(1)^2 + a(1) + b = 2 - 7 + a + b = a + b - 5 \] Thus, we have: \[ \frac{0}{a + b - 5} \] ### Step 2: Apply L'Hôpital's Rule Since we have a \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule. We differentiate the numerator and the denominator. **Numerator:** Using the chain rule: \[ \frac{d}{dx}[\sin(3x^2 - 4x + 1)] = \cos(3x^2 - 4x + 1) \cdot (6x - 4) \] The derivative of \( -x^2 + 1 \) is \( -2x \). So, the derivative of the numerator is: \[ \cos(3x^2 - 4x + 1)(6x - 4) - 2x \] **Denominator:** The derivative of \( 2x^3 - 7x^2 + ax + b \) is: \[ 6x^2 - 14x + a \] ### Step 3: Evaluate the Limit Again Now we evaluate the limit again: \[ \lim_{x \to 1} \frac{\cos(3(1)^2 - 4(1) + 1)(6(1) - 4) - 2(1)}{6(1)^2 - 14(1) + a} \] Calculating this gives: Numerator: \[ \cos(0)(6 - 4) - 2 = 1 \cdot 2 - 2 = 0 \] Denominator: \[ 6 - 14 + a = a - 8 \] Thus, we have: \[ \frac{0}{a - 8} \] ### Step 4: Set the Limit to -2 Since we need the limit to equal -2, we set up the equation: \[ \frac{0}{a - 8} = -2 \] For this to hold true, the denominator must also equal zero: \[ a - 8 = 0 \implies a = 8 \] ### Step 5: Substitute \( a \) Back to Find \( b \) Now we substitute \( a = 8 \) back into our earlier expression for the denominator: \[ a + b - 5 = 0 \implies 8 + b - 5 = 0 \implies b = -3 \] ### Step 6: Find \( a - b \) Now we can find \( a - b \): \[ a - b = 8 - (-3) = 8 + 3 = 11 \] Thus, the value of \( a - b \) is: \[ \boxed{11} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)((3x^(2)+1)/(2x^(2)-1))^((x^(3))/(1-x))

lim_(x rarr oo)((3x^(2)+1)/(2x^(2)-1))^((x^(3))/(1-x))

lim_(x rarr1)(x^(2)-7x+12)/(x^(2)+4-3x-4)

lim_ (x rarr oo) (3x ^ (- 1) + 4x ^ (- 2)) / (5x ^ (- 1) + 6x ^ (- 2))

lim_(x rarr1)(x^(2)-3x+2)/(x^(3)-4x+3)

lim_(x rarr0)((5x^(2)+1)/(3x^(2)+1))^(1/x^(2))

lim_(x rarr0)(sin3x+7x)/(4x+sin2x)

lim_ (x rarr oo) {(3x ^ (2) +1) / (4x ^ (2) -1)} ^ ((x ^ (3)) / (1 + x))

lim_(x rarr1)((3x-4)(sqrt(x)-1))/(2x^(2)+x-3)

lim_ (x rarr (1) / (2)) ((8x-3) / (2x-1) - (4x ^ (2) +1) / (4x ^ (2) -1))