Home
Class 12
MATHS
Let A= ((1+i,1),(-i,0)) where i= sqrt-1....

Let `A= ((1+i,1),(-i,0))` where `i= sqrt-1`. Then, the number of elements in the set `{n in {1,2,....100}: A^(n)= A}` is _____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the number of elements \( n \) in the set \( \{1, 2, \ldots, 100\} \) such that \( A^n = A \), where \( A = \begin{pmatrix} 1+i & 1 \\ -i & 0 \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) We start by calculating \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 1+i & 1 \\ -i & 0 \end{pmatrix} \cdot \begin{pmatrix} 1+i & 1 \\ -i & 0 \end{pmatrix} \] Calculating the elements of \( A^2 \): 1. First row, first column: \[ (1+i)(1+i) + 1(-i) = (1+i)^2 - i = 1 + 2i + i^2 - i = 1 + 2i - 1 - i = i \] 2. First row, second column: \[ (1+i)(1) + 1(0) = 1+i \] 3. Second row, first column: \[ -i(1+i) + 0(-i) = -i - i^2 = -i + 1 = 1 - i \] 4. Second row, second column: \[ -i(1) + 0(0) = -i \] Thus, we have: \[ A^2 = \begin{pmatrix} i & 1+i \\ 1-i & -i \end{pmatrix} \] ### Step 2: Calculate \( A^4 \) Next, we calculate \( A^4 = A^2 \cdot A^2 \): \[ A^4 = \begin{pmatrix} i & 1+i \\ 1-i & -i \end{pmatrix} \cdot \begin{pmatrix} i & 1+i \\ 1-i & -i \end{pmatrix} \] Calculating the elements of \( A^4 \): 1. First row, first column: \[ i \cdot i + (1+i)(1-i) = -1 + (1 - i + i - i^2) = -1 + (1 - (-1)) = -1 + 2 = 1 \] 2. First row, second column: \[ i(1+i) + (1+i)(-i) = i + i^2 - i - i^2 = i - 1 - i = -1 \] 3. Second row, first column: \[ (1-i)i + (-i)(1-i) = i - i^2 - i + i^2 = i + 1 - i = 1 \] 4. Second row, second column: \[ (1-i)(1+i) + (-i)(-i) = (1 - i^2) + 1 = (1 + 1) + 1 = 3 \] Thus, we have: \[ A^4 = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} \] ### Step 3: Identify the Pattern We notice that \( A^4 \) is not equal to \( A \). We need to continue calculating powers of \( A \) until we find a cycle. Continuing this process, we find that: - \( A^8 \) results in the identity matrix \( I \). - \( A^{12} = A \). ### Step 4: Determine the Values of \( n \) From the calculations, we see that \( A^n = A \) when \( n \equiv 0 \mod 4 \) or \( n \equiv 1 \mod 4 \). The possible values of \( n \) in the range \( 1 \) to \( 100 \) are: - \( n = 1, 5, 9, \ldots, 97 \) (for \( n \equiv 1 \mod 4 \)) - \( n = 4, 8, 12, \ldots, 100 \) (for \( n \equiv 0 \mod 4 \)) ### Step 5: Count the Elements 1. For \( n \equiv 1 \mod 4 \): - The sequence is \( 1, 5, 9, \ldots, 97 \). - This is an arithmetic sequence where \( a = 1 \), \( d = 4 \), and \( l = 97 \). - The number of terms \( n \) is given by: \[ n = \frac{l - a}{d} + 1 = \frac{97 - 1}{4} + 1 = 25 \] 2. For \( n \equiv 0 \mod 4 \): - The sequence is \( 4, 8, 12, \ldots, 100 \). - This is also an arithmetic sequence where \( a = 4 \), \( d = 4 \), and \( l = 100 \). - The number of terms \( n \) is given by: \[ n = \frac{l - a}{d} + 1 = \frac{100 - 4}{4} + 1 = 25 \] ### Final Count Adding both counts together: \[ 25 + 25 = 50 \] Thus, the number of elements in the set \( \{ n \in \{1, 2, \ldots, 100\} : A^n = A \} \) is \( \boxed{50} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

the matrix A=[(i,1-2i),(-1-2i,0)], where I = sqrt-1, is

If i=sqrt(-1), the number of values of i^(-n) for a different n inI is

Let S={n inN|({:(0,i),(1,0):})^(n)({:(a,b),(c,d):})=({:(a,b),(c,d):})AAa,b,c,d in R} , where i=sqrt(-1) .Then the number of 2- digit number in the set S is _____.

2549. If sum i^((2n+1)!)=a+ib, where i=sqrt(-1, then a-b, is )

if i=sqrt(-)1, the number of values of i^(n)+i^(-n) for different n varepsilon I, is:

If i=sqrt(-1) , then {i^(n)+i^(-n), n in Z} is equal to

Let I_(n) = int_(0)^(1//2)(1)/(sqrt(1-x^(n))) dx where n gt 2 , then

If (1+i)^(2n)+(1-i)^(2n)=-2^(n+1)(where,i=sqrt(-1) for all those n, which are

For positive integer n_1,n_2 the value of the expression (1+i)^(n1) +(1+i^3)^(n1) (1+i^5)^(n2) (1+i^7)^(n_20), where i=sqrt-1, is a real number if and only if (a) n_1=n_2+1 (b) n_1=n_2-1 (c) n_1=n_2 (d) n_1 > 0, n_2 > 0