Home
Class 12
MATHS
The maximum number of compound propositi...

The maximum number of compound propositions, out of `p vv r vv s, p vv r vv ~ s, p vv ~ q vv s, ~p vv ~ r vv s, ~p vv ~r vv ~s, ~p vv q vv ~s, q vv ~q vv ~s, q vv r vv ~s, q vv ~ r vv ~s, ~p vv ~q vv ~s` that can be made simultaneously true by an assignment of the truth values to p, q, r and s, is equal to ____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the maximum number of compound propositions that can be made simultaneously true by assigning truth values to \( p, q, r, \) and \( s \), we will analyze each proposition step by step. ### Given Propositions: 1. \( p \lor r \lor s \) 2. \( p \lor r \lor \neg s \) 3. \( p \lor \neg q \lor s \) 4. \( \neg p \lor \neg r \lor s \) 5. \( \neg p \lor \neg r \lor \neg s \) 6. \( \neg p \lor q \lor \neg s \) 7. \( q \lor \neg q \lor \neg s \) 8. \( q \lor r \lor \neg s \) 9. \( q \lor \neg r \lor \neg s \) 10. \( \neg p \lor \neg q \lor \neg s \) ### Step-by-Step Solution: **Step 1: Analyze the propositions involving \( \neg s \)** We first note that several propositions contain \( \neg s \): - \( p \lor r \lor \neg s \) (2) - \( p \lor \neg q \lor \neg s \) (3) - \( \neg p \lor \neg r \lor \neg s \) (5) - \( \neg p \lor q \lor \neg s \) (6) - \( q \lor \neg q \lor \neg s \) (7) - \( q \lor r \lor \neg s \) (8) - \( q \lor \neg r \lor \neg s \) (9) - \( \neg p \lor \neg q \lor \neg s \) (10) If we set \( s = \text{False} \), then \( \neg s = \text{True} \). This means all propositions that include \( \neg s \) will be true. **Step 2: Count the propositions that can be true with \( s = \text{False} \)** By setting \( s = \text{False} \): - Propositions 2, 3, 5, 6, 7, 8, 9, and 10 are true, which gives us **8 true propositions**. **Step 3: Analyze the remaining propositions without \( \neg s \)** Now we need to check the remaining propositions: 1. \( p \lor r \lor s \) (1) - This will be false since \( s = \text{False} \). 2. \( p \lor r \lor \neg s \) (2) - This is true since \( \neg s = \text{True} \). **Step 4: Determine if we can make the remaining propositions true** To maximize the number of true propositions, we need to check if we can set values for \( p \) and \( r \) such that: - \( p \lor r \lor s \) is true. Since \( s = \text{False} \), we need \( p \lor r \) to be true. We can set \( p = \text{True} \) or \( r = \text{True} \). **Step 5: Conclusion** With \( s = \text{False} \), \( p = \text{True} \), and \( r = \text{True} \), we can satisfy all propositions: - \( p \lor r \lor s \) becomes true. - All other propositions involving \( \neg s \) remain true. Thus, the maximum number of compound propositions that can be made simultaneously true is **9**. ### Final Answer: The maximum number of compound propositions that can be made simultaneously true is **9**.
Promotional Banner

Similar Questions

Explore conceptually related problems

The negation of the compound proposition p vv ( ~ p vv q) is

p vv ~(p ^^ q) is a

~[ p vv (~q)] is equal to-

The proposition S : (p rArr q) iff (~p vv q) is a

(p ^^ ~q) ^^ (~p vv q) is

The negation of p vv ~ q is

(p ^^ q) vv ~ p is equivalent to

Negation of (~p ^^~ q) vv (~p vv r) is