Home
Class 11
CHEMISTRY
The radius of the second Bohr orbit for ...

The radius of the second Bohr orbit for hydrogen atom is :
(Planck's constant, `h = 6.6262 xx 10^(-34) Js`, mass of electron = `9.1091 xx 10^(-31) kg`, charge of electron `e = 1.60210 xx 10^(-19) C`, permittivity of vaccum `in_0 = 8.854185 xx 10^(-12) kg^(-1) m^(-3) A^2)`

A

`4.76 Å`

B

`0.529 Å`

C

`2.12 Å`

D

`1.65 Å`

Text Solution

Verified by Experts

The correct Answer is:
C

`R=0.529n^2/zÅ=0.529(2^2)/(1)Å`
`=2.12 Å`
Promotional Banner

Similar Questions

Explore conceptually related problems

The radius of the second Bohr orbit for hydrogen atom is : (Plank'c const. h = 6.6262 xx 10^(-34) Js , mass electron = 9.1091 xx 10^(-31) Kg , charge of electron e = 1.60210 xx 10^(-19) , permittivity of vaccum in_(0) = 8.854185 xx 10^(-12) kg^(-1) m^(-3) A^(2))

Radius of the fourth orbit in hydrogen atom is 0.85 nm. Calculate the velocity of the electron in this orbit (mass of electron = 9.1 xx 10^(-31) kg) .

Calculate the radius of second Bohr orbit in hydrogen atom from the given data. Mass of electron =9.1xx10^(-31)" kg" Charge on the electron =1.6xx10^(-19)C Planck's constant =6.63xx10^(-34)" J-s". Permittivity of free space =8.85xx10^(-12)"C"^(2)//"Nm"^(2) .

The kinetic energy of an electron is 4.55 xx 10^(-25)J . Calculate the wavelength . [h = 6.6 xx 10^(-34)Js , mass of electron = 9.1 xx 10^(-31)kg]