Home
Class 11
CHEMISTRY
When light of wavelength 248 nm falls on...

When light of wavelength 248 nm falls on a metal of threshold energy 3.0 eV, the de-Broglie wavelength of emitted electrons is `"_________"Å` (Round off to the Nearest Integer).
[Use `: sqrt3 = 1.73 , h - 6.63 xx 10 ^(-34) Js`
`m _(c ) = 9.1 xx 10 ^(-31) kg , c =3.0 xx 10 ^(8) ms ^(-1) ,1eV = 1. 6 xx 10 ^(-19))]`

Text Solution

Verified by Experts

The correct Answer is:
9

Energy incident `=(hc)/lamda`
`=(6.63 xx 10^(-34) xx 3.0xx10^8)/(248 xx 10^(-9) xx1.6xx10^(-19))eV`
`=(6.63xx3xx100)/(248 xx1.6)`
` = 0.05 eV xx100 = 5eV`
Now using
`E =phi +` K.E.
5 = 3 + K.E.
K.E. = 2eV =`3.2 xx10^(-19) J`
For de-Broglie wavelength `lamda = h/(mv)`
K.E. `=1/2mv^2`
so `v=sqrt((2KE)/m)`
hence `lamda=h/(sqrt(2KExxm))`
`=(6.63xx10^(-34))/(sqrt(2xx3.2xx10^(-19) xx9.1xx10^(-31))`
`=( 6.63)/(7.6) xx(10^(-34))/(10^(-25))=(66.3xx10^(-10) m)/(7.6)`
`= 8.72xx10^(-10)m`
`=9xx10^(-10)m = 9Å`
Promotional Banner

Similar Questions

Explore conceptually related problems

Electromagnetic radiation of wavelength 663 nm is just sufficient to ionise the atom of metal A. The ionization energy of metal A in kJ "mol"^(-1) is _______. (Rounded-off to the nearest integer) [h = 6.63 xx 10^(-34) Js, c = 3.00 xx 10^8 ms^(-1) , N_A = 6.02 xx 10^23 "mol"^(-1) ]

The kinetic energy of an electron is 5 eV . Calculate the de - Broglie wavelength associated with it ( h = 6.6 xx 10^(-34) Js , m_(e) = 9.1 xx 10^(-31) kg)

Light of wavelength 4000 Å falls on a photosensitive metal and a negative 2 V potential stops the emitted electrons. The work function of the material ( in eV) is approximately ( h = 6.6 xx 10^(-34) Js , e = 1.6 xx 10^(-19) C , c = 3 xx 10^(8) ms^(-1))

The energy of X-ray photon of wavelength 1.65 Å is (h=6.6 xx 10^(-34)J-sec,c=3xx10^(8)ms^(-1),1eV=1.6xx10^(-19)J)

If de Broglie wavelength of an electron is 0.5467 Å, find the kinetic energy of electron in eV. Given h=6.6xx10^(-34) Js , e= 1.6xx10^(-19) C, m_e=9.11xx10^(-31) kg.

Calculate the (a) momentum and (b) de-Broglie wavelength of the electrons accelerated through a potential difference of 56V. Given, h=6.63xx10^(-34)Js, m_(e)=9.1xx10^(-31)kg, e=1.6xx10^(-19)C .

The de-Broglie wavelength of an electron is 600 nm . The velocity of the electron is: (h = 6.6 xx 10^(-34) J "sec", m = 9.0 xx 10^(-31) kg)

if the de broglie wavelength of an electron is 0.3 nanometre, what is its kinetic energy ? [h=6.6xx10^(-34) Js, m=9xx10^(-31)kg, 1eV = 1.6xx10^(-19) J]

The de-Broglie wavelength of an electron is 66 nm. The velocity of the electron is [h= 6.6 xx 10^(-34) kg m^(2)s^(-1), m=9.0 xx 10^(-31) kg]

The de - Broglie wavelength of an electron having 80 ev of energy is nearly ( 1eV = 1.6 xx 10^(-19) J , Mass of electron = 9 xx 10^(-31) kg Plank's constant = 6.6 xx 10^(-34) J - sec )