Home
Class 11
CHEMISTRY
C("graphite")+O(2)(g)rarrCO(2)(g) delt...

`C_("graphite")+O_(2)(g)rarrCO_(2)(g)`
`deltaH=-94.05Kcalmol^(-1)`
`C_("diamond")+O_(2)(g),DeltaH=-94.50Kcalmol^(-1)
Therefore,

A

`C_(("graphite")) rarr C_(("diamond")) , Delta H_(298K)^(@)= - 450cal mol^(-1)`

B

`C_(("diamond")) rarr C_(("graphite")), Delta H_(298K)^(@) = +450 cal mol^(-1)`

C

Graphite is the stabler allotrope

D

Diamond is harder than graphite

Text Solution

Verified by Experts

The correct Answer is:
C

C(graphite) `+ O_(2)(g) rarr CO_(2)(g), Delta H = -94.05` kcal/mole
C(diamond) `+O_(2)(g) rarr CO_(2)(g), Delta H= -94.50` kcal/mole
C(graphite) `rarr C` (diamond), `Delta H= -94.05+ 94.50 = +450` cal/mol
So graphite is the stabler allotrope. Hardness of two compounds cannot be predicted from the given equations
Promotional Banner

Similar Questions

Explore conceptually related problems

C_(("graphite")) + O_(2(g)) to CO_(2(g)) - 94.0 kcal

From the data at 25^(@)C : Fe_(2)O_(3)(s) +3C_(("graphite")) rarr 2Fe(s) + 3CO(g), DeltaH^(Theta) = 492.0 kJ mol^(-1) FeO(s) +C_(("graphite")) rarr Fe(s) CO(g), DeltaH^(Theta) = 155.0 kJ mol^(-1) C_(("graphite")) +O_(2)(g) rarr CO_(2)(g), DeltaH^(Theta) =- 393.0 kJ mol^(-1) CO(g)+(1)/(2)O_(2)(g) rarr CO_(2)(g), DeltaH^(Theta) =- 282.0 kJ mol^(-1) Calculate the standard heat of formation of FeSO(s) and Fe_(2)O_(3)(s) .

Based on the following reaction C(graphite) + O_2(g)rarrCO_2(g),DeltaH=-394KJ//mol...(i) 2CO(g)+O_2(g)rarr2CO_2(g),DeltaH=-569KJ//mol...(ii) The heat of formation of CO will be

The enthalpy change for the following reactions are: C_("diamond")+O_(2(g)) rarr CO_(2(g))" "DeltaH=-395.3 KJ "mol"^(-1) C_("graphite")+O_(2(g)) rarr CO_(2(g)) " "DeltaH=-393.4 KJ "mol"^(-1) The enthalpy change for the transition C_("diamond")rarr C_("graphite") will be :

Given that: i. C("graphite") +O_(2)(g) rarr CO_(2)(g), DeltaH =- 393.7 kJ ii. C("diamond") rarr C("graphite"), DeltaH =- 2.1 kJ a. Calculate DeltaH for buring of diamond of CO_(2) . b. Calculate the quantity of graphite that must be burnt to evolve 5000 kJ of heta.