Home
Class 11
MATHS
If log7 2=m then log(49)28 is equal to...

If `log_7 2=m` then `log_(49)28` is equal to

A

`2(1+2m)`

B

`(1+2m)/(2)`

C

`(2)/(1+2m)`

D

`1+m`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(7) 2 = m , then find log_(49) 28 in terms of m.

7 lf If log (x y m 2n and log (x4 y n 2m, then log X is equal to (A) (B) m-n (c) men (D) m n

(1 + log_(n)m) * log_(mn) x is equal to

If a^(log_(3)7)=9, then a^((log_(3)7)^(2)) is equal to

Let x=(anti log_2 3)*log_3 2, y=log_2(log_3 512))"and"z=log_5 3*log_7 5*log_2 7, then xyz is equal to

If log_(a)m = x, then log_(1//a) ""(1)/(m) is equal to

Given that log_(2)3=a,log_(3)5=b,log_(7)2=c then the value of log_(140)63 is equal to