Home
Class 11
MATHS
Sigma(n=1)^(n) (1)/(log(2^(n)) (a))=...

`Sigma_(n=1)^(n) (1)/(log_(2^(n)) (a))`=

A

`(n(n+1))/(2) log_(a) 2`

B

`(n(n+1))/(2) log_(2) a`

C

`((n+1)^(2) n^(2))/(4) log_(2) a`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(n=1)^(n)(1)/(log_(2)(a))

If (1)/(log_(2)a)+(1)/(log_(4)a)+(1)/(log_(8)a)+(1)/(log_(16)a)+….+ (1)/(log_(2^(n))a) = (n(n+1))/(k) then k log_(a)2 is equal to

If Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value of lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r)) is equal to

Sigma_(n=1)^(5)sin ^(-1) ( sin ( 2n -1)) is