Home
Class 11
MATHS
If log(x^(2) - 16) le log(e) (4 x -11), ...

If `log(x^(2) - 16) le log_(e) (4 x -11)`, then

A

`4 lt x le 5`

B

`x lt -4 or x gt 4`

C

`-1 le x le 5`

D

`x lt -1 or x gt 5`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

In the expansion of 2 log_(n) x- log_(n) (x+1) - log_(e)(x-1), the coefficient of x^(-4) is

If log_(4) x + log_(8)x^(2) + log_(16)x^(3) = (23)/(2) , then log_(x) 8 =

The solution set of the inequality log_(10)(x^(2)-16)<=log_(10)(4x-11) is 4,oo) (b) (4,5)(c)((11)/(4),oo)(d)((11)/(4),5)

If log_(16) x + log_(x) x + log_(2) x = 14 , then x =

If log_(x) 2 log_((x)/(16)) 2 = log_((x)/(64)) 2, then x =

If 2log(x+4) = log 16, then x=?

If the area of the bounded region R= {(x,y): "max" {0, log_(e)x} le y le 2^(x), (1)/(2) le x le 2} is alpha (log_(e)2)^(-1) + beta (log_(e )2) +gamma , then the value of (alpha +beta-2gamma)^(2) is equal to