Home
Class 11
MATHS
If log(10)2=0*30103, log(10)3=0*47712 , ...

If `log_(10)2=0*30103, log_(10)3=0*47712` , the number of digits in `3^(12)xx2^(8)` is

A

7

B

8

C

9

D

10

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(10)2=0.30103,log_(10)3=0.47712, the number of digits in 3^(12)*2^(6)

If (log)_(10)2=0.30103,(log_(10)3=0.47712 then find the number of digits in 3^(12)*2^(8)

* if log_(10)3=0.4771 then the number of digits in 3^(40) is =

If log_(10)2= 0.3010 , then the number of digits in 16^(12) is

If log_(10)2=0.3010,log_(10)3=0.4771. Find the number of integers in : (a) 5^(200)(b)6^(15)E the number of zeros after the decimal in 3^(-100)

If log2=0.301 and log3=0.477, find the number of digits in: (3^(15)xx2^(10))