Home
Class 11
MATHS
If (1)/(x(x+1) (x+2)...(x+n)) = (A(0))/(...

If `(1)/(x(x+1) (x+2)...(x+n)) = (A_(0))/(x) + (A_(1))/(x+1) + (A_(2))/(x+ 2)+ ...+ (A_(n))/(x+n)` then `A_(r)`=

A

`(r!(-1)^(r))/((n-r)!)`

B

`((-1)^(r))/(r!(n-r)!)`

C

`(1)/(r!(n-r)!)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let y = 1 + (a_(1))/(x - a_(1)) + (a_(2) x)/((x - a_(1))(x - a_(2))) + (a_(3) x^(2))/((x - a_(1))(x - a_(2))(x - a_(3))) + … (a_(n) x^(n - 1))/((x - a_(1))(x - a_(2))(x - a_(3))..(x - a_(n))) Find (dy)/(dx)

If n ge 2 , and (1 + x + x^(2))^(n) = a_(0) + a_(1)x + a_(2)x^(2) + .. . +a_(2n) x^(2n) , then a_(0) - 2a_(1)+ 3a_(2) + ... + (2n + 1)a_(n) = ______

If (x + a_(1)) (x + a_(2)) (x + a_(3)) …(x + a_(n)) = x^(n) + S_(1) x^(n-1) + S_(2) x^(n-2) + …+ S_(n) where , S_(1) = sum_(i=0)^(n) a_(i), S_(2) = (sumsum)_(1lei lt j le n) a_(i) a_(j) , S_(3) (sumsumsum)_(1le i ltk le n)a_(i) a_(j) a_(k) and so on . Coefficient of x^(7) in the expansion of (1 + x)^(2) (3 + x)^(3) (5 + x)^(4) is

If (1+x)^(n) = a_(0) + a_(1)x + a_(2)x^(2) + ....+a_(n)x^(n) , then (1+(a_(1))/(a_(0)))(1+(a_(2))/(a_(1)))(1+(a_(3))/(a_(2)))...(1+(a_(n))/(a_(n-1)))=

(1+x)^(n)=a_(0)+a_(1)x+a_(2)*x^(2)+......+a_(n)x^(n) then prove that

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

Let (1 + x)^(n) = sum_(r=0)^(n) a_(r) x^(r) . Then ( 1+ (a_(1))/(a_(0))) (1 + (a_(2))/(a_(1)))…(1 + (a_(n))/(a_(n-1))) is equal to