Home
Class 11
MATHS
(x^4+24 x^2+28)/((x^2+1)^3)=...

`(x^4+24 x^2+28)/((x^2+1)^3)=`

A

`(1)/((x^(2) + 1)) + (22)/((x^(2) +1)^(2))+ (5)/((x^(2) + 1)^(3))`

B

`(1)/((x^(2)+1)) + (22)/((x^(2)+1)^(2))- (5)/((x^(2)+1)^(2))`

C

`(1)/((x^(2)+1))- (22)/((x^(2)+1)^(2))- (5)/((x^(2)+1)^(3))`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

(x^(4)+24x^(2)+28)/((x^(2)+1)^(3))=

The sum of all possible solution (s) of the equation |x+2|-3|=sgn(1-|((x-2)(x^(2)+10x+24))/((x^(2)+1)(x+4)(x^(2)+4x-12))|)

Solve: (x^(2)-2x+24)/(x^(2)-3x+4)<=4

(a) Find the HCF of 28x^(4) and 70x^(6) . (b) Find the HCF of 48x^(2) (x + 3)^(2) (2x-1)^(3) (x + 1) and 60x^(3) (x+ 3) (2x-1)^(2) (x + 2) .

If x^(2)+3x+1=0 then find x^(3)+(1)/(x^(3)),x^(4)+(1)/(x^(4)),x^(2)-(1)/(x^(2)),x^(2)+(1)/(x^(2))

(x^2+x-6)(x^2-3x-4)=24

Divide (29 x - 6x^(2) - 28) by (3x - 4)

Find the greatest and the least values of the following functions on the indicated intervals : f(x) = 1/4 x^(4) -2/3 x^(3)-3/2 x^(2) +2 " on " [-2,4]

If x^2-x+1 =0 then find the value of (x+1/x)^2+(x^2+1/x^2)^2+(x^3+1/x^3)^2+...+(x^24+1/x^24)^2 .