Home
Class 11
MATHS
omega is a complex cube root of unity, t...

`omega` is a complex cube root of unity, then `(1-omega)(1-pmega^2)(1-omega^4)(1-omega^8)`

A

0

B

1

C

`-1`

D

9

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

omega is a complex cube root of unity,then (1-omega)(1-+-ega^(2))(1-omega^(4))(1-omega^(8))

If omega is a complex cube root of unity then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16))

If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=

If omega is complex cube root of unity (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16))

If omega is a complex cube root of unity, then ((1+i)^(2n)-(1-i)^(2n))/((1+omega^(4)-omega^(2))(1-omega^(4)+omega^(2)) is equal to

If omega is a complex cube root of unity then the value of (1+omega)(1+omega^(2))(1+omega^(4)).......2n terms-

If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) …upto 2n is factors, is

If omega is an imainary cube root of unity,then show that (1-omega)(1-omega^(2))(1-omega^(4))(1-omega^(5))=9

If omega is a complex cube root of unity,show that ([1 omega omega^(2)omega omega^(2)1 omega^(2)1 omega]+[omega omega^(2)1 omega^(2)1 omega omega omega^(2)1])[1 omega omega^(2)]=[000]