Home
Class 11
MATHS
If tan^(-1) ( alpha +ibeta) = x+ iy, the...

If `tan^(-1) ( alpha +ibeta) = x+ iy`, then x is equal to

A

`1/2tan^(-1)((2alpha)/(1-alpha^2-beta^2))`

B

`1/2tan^(-1)((2alpha)/(1+alpha^2+beta^2))`

C

`tan^(-1)((2alpha)/(1-alpha^2-beta^2))`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)(alpha+i beta)=x+iy, then x is equal to

If tan (alpha + beta) = 2 and tan (alpha - beta) = 1, then tan (2 alpha ) is equal to:

cot^(-1)((alpha)/(2))-tan^(-1)(sqrt(cosalpha))=x , then sin x is equal to

if cot^(-1)[sqrt(cos alpha)]-tan^(-1)[sqrt(cos alpha)]=x then sin x is equal to