Home
Class 11
MATHS
If |z+barz|+|z-barz|=2, then z lies on...

If `|z+barz|+|z-barz|=2`, then z lies on

A

A circle

B

A square

C

An ellipse

D

A line

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If |z+barz|+|z-barz|=8 , then z lies on

If |z+barz|=|z-barz| , then value of locus of z is

If z is a complex number such that |z - barz| +|z + barz| = 4 then find the area bounded by the locus of z.

If (1+i)z=(1-i)barz , then z is equal to

Prove that |(z-1)/(1-barz)|=1 where z is as complex number.

Solve: z +2barz=ibarz

If |z|= maximum {|z+2|,|z-2|} , then (A) |z- barz | = 1/2 (B) |z+ barz |=4 (C) |z+ barz |= 1/2 (D) | z-barz =2

If z_1, z_2, z_3 are three collinear points in |argand plane, then |(z_1,bar z_1,1),(z_2,barz_2,1),(z_3,barz_3,1)|=

If z= x+iy, "then show that " z barz + 2(z + barz) +b = 0, where b ∈R,"respresents a circle" .