Home
Class 11
MATHS
Which of the following are correct for a...

Which of the following are correct for any two complex numbers `z_1 and z_2?` (A) `|z_1z_2|=|z_1||z_2|` (B) `arg(|z_1 z_2|)=(argz_1)(arg,z_2)` (C) `|z_1+z_2|=|z_1|+|z_2|` (D) `|z_1-z_2|ge|z_1|-|z_2|`

A

`|z_1 z_2| = |z_1| |z_2|`

B

arg `(z_1z_2)` = arg `(z_1)`. arg `(z_2)`

C

`|z_1+z_2|=|z_1|+|z_2|`

D

`|z_1+z_2| ge|z_1|-|z_2|`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following is correct for any tow complex numbers z_(1) and z_(2)?(a)|z_(1)z_(2)|=|z_(1)||z_(2)|(b)arg(z_(1)z_(2))=arg(z_(1))arg(z_(2))(c)|z_(1)+z_(2)|=|z_(1)|+|z_(2)|(d)|z_(1)+z_(2)|>=|z_(1)|+|z_(2)|

For any two complex numbers z_(1) and z_(2), prove that |z_(1)+z_(2)| =|z_(1)|-|z_(2)| and |z_(1)-z_(2)|>=|z_(1)|-|z_(2)|

Show that for any two non zero complex numbers z_1,z_2 (|z_1|+|z_2|)|z_1\|z_1|+z_2\|z_2||le2|z_1+z_2|

If for the complex numbers z_(1) and z_(2)|z_(1)+z_(2)|=|z_(1)-z_(2)|, then Arg(z_(1))-Arg(z_(2)) is equal to

Prove that for nonzero complex numbers |z_1+z_2| |frac(z_1)(|z_1|)+frac(z_2)(|z_2|)|le2(|z_1|+|z_2|) .

If |z_1+z_2|=|z_1-z_2| and |z_1|=|z_2|, then (A) z_1=+-iz_2 (B) z_1=z_2 (C) z_=-z_2 (D) z_2=+-iz_1

If z_1 and z_2 are two nonzero complex numbers such that |z_1-z_2|=|z_1|-|z_2| then arg z_1 -arg z_2 is equal to