Home
Class 11
MATHS
If |z1|= |z2|=1 and amp z1+ampz2=0 then...

If `|z_1|`= `|z_2|`=1 and amp `z_1`+amp`z_2`=0 then

A

`z_1 =z_2`

B

`barz_1 =z_2`

C

`z_1+z_2 = 0`

D

`barz_1 =barz_2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If |z_(1)|=|z_(2)|andamp(z_(1))+amp(z_(2))=0, then

if |z_1| = |z_2| ne 0 and amp (z_1)/(z_2) = pi then

If |z_1 |=|z_2|=|z_3| = 1 and z_1 +z_2+z_3 =0 then the area of the triangle whose vertices are z_1 ,z_2 ,z_3 is

If |z_1+z_2|=|z_1-z_2| and |z_1|=|z_2|, then (A) z_1=+-iz_2 (B) z_1=z_2 (C) z_=-z_2 (D) z_2=+-iz_1

If |z_1+z_2| = |z_1-z_2| , prove that amp z_1 - amp z_2 = pi/2 .

If |z_(1)|=|z_(2)|=|z_(3)| and z_(1)+z_(2)+z_(3)=0 , then z_(1),z_(2),z_(3) are vertices of

If |z-i|=1 and amp(z)=(pi)/(2)(z!=0), then z is

If |z_1-1|=Re(z_1),|z_2-1|=Re(z_2) and arg (z_1-z_2)=pi/3, then Im (z_1+z_2) =

Consider z_(1)andz_(2) are two complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| Statement -1 amp (z_(1))-amp(z_(2))=0 Statement -2 The complex numbers z_(1) and z_(2) are collinear.