Home
Class 11
MATHS
If | z - 25 i| le 15 then | max: amp(z)...

If ` | z - 25 i| le 15` then | max: amp(z) - min amp (z) | =

A

`cos^(-1)(3/5)`

B

`pi-2cos^(-1)(3/5)`

C

`pi+2cos^(-1)(3/5)`

D

`sin^(-1)(3/5)-cos^(-1)(3/5)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-25i|<=15, then value of max(arg(z))

Among the complex numbers z ,which satisfies |z-25i<=15 then |max.arg z - min arg z| is pi-2tan^(-1)((l)/(m)) then l+m is

If |z-25i|<=15. then | maximum backslash arg(z)- minimum backslash arg(z)| equals

If |z-25i|le15 , then find (i) Maximum |z| (2) Maximum arg (z) (3) minimum |z| (4) Minimum arg (z)

If |z_1+z_2| = |z_1-z_2| , prove that amp z_1 - amp z_2 = pi/2 .

Let S = {z in C : |z - 2| = |z + 2i| = |z - 2i|} then sum_(z in S) |z + 1.5| is equal to _________

Let z be a complex number satisfying |z-5i|<=1 such that amp(z) is minimum, then z is equal to

If | z_ (1) | = | z_ (2) | = | z_ (3) | = 1 & z_ (1) + z_ (2) + z_ (3) = sqrt (2) + i then ((z_ (1) ) / (z_ (2)) + (z_ (2)) / (z_ (3)) + (z_ (3)) / (z_ (4))) =