Home
Class 11
MATHS
If omega is a complex cube root of unity...

If `omega` is a complex cube root of unity, then `(x-y)(xomega - y)(xomega^2 - y) =`

A

`x^2+y^2`

B

`x^2-y^2`

C

`x^3-y^3`

D

`x^3+y^3`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity,then (x-y)(x omega-y)(x omega^(2)-y)=

If omega is a complex cube root of unity, then arg (iomega) + "arg" (iomega^(2))=

If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=

If omega is a complex cube root of unity then x_(n)=omega^(n)+(1)/(omega^(n)) then x_(1)x_(2)x_(3),............,x_(12)=

If omega ne 1 is a complex cube root of unity, then 5.23 + omega + omega^(((1)/(2) + (3)/(8) + (9)/(32) + (27)/(128)+...)) is equal to __________

If omega is a complex cube root of unity then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16))