Home
Class 11
MATHS
Show that (1-omega+omega^2)(1-omega^2+om...

Show that `(1-omega+omega^2)(1-omega^2+omega^4)(1-omega^4+omega^8).......` to 2n factors= `2^(2n)`

A

`2^n`

B

`2^(2n)`

C

0

D

1

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8))...... to 2 n factors =2^(2n)

(1-omega+omega^(2))(1+omega-omega^(2))=4

If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) …upto 2n is factors, is

Prove that (1-omega-omega^(2))(1-omega+omega^(2))(1+omega-omega^(2))=8

The value of (x+omega+omega^(2)) (x +omega^(2)+omega^(4))(x +omega^(4)+omega^(8)) .... till 2n factors

If 1,omega,omega^(2) are cube roots of unity then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) is equal to

(1-omega+omega^(2))^(2)+(1+omega-omega^(2))^(2)=-4

If omega is a complex cube root of unity then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16))