Home
Class 11
MATHS
Let omega be an imaginary root of x^n=1....

Let `omega` be an imaginary root of `x^n=1`.Then `(5-omega)(5-omega^2)....(5-omega^[n-1])` is

A

1

B

`(5^n+1)/4`

C

`4^(n-1)`

D

`(5^n-1)/4`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

if 1,alpha_1, alpha_2, ……alpha_(3n) be the roots of equation x^(3n+1)-1=0 and omega be an imaginary cube root of unilty then ((omega^2-alpha_1)(omega^2-alpha).(omega^2-alpha(3n)))/((omega-alpha_1)(omega-alpha_2)……(omega-alpha_(3n)))= (A) omega (B) -omega (C) 1 (D) omega^2

If omega is an imainary cube root of unity,then show that (1-omega)(1-omega^(2))(1-omega^(4))(1-omega^(5))=9

If omega is an imaginary cube root of unity, then (1+omega-omega^(2))^(7) equals

If omega be an imaginary cube root of unity,show that (1+omega-omega^(2))(1-omega+omega^(2))=4

If omega be imaginary cube root of unity then (1-omega+omega^(2))^(5)+(1+omega-omega^(2))^(5) is equal to (a) 0 (b) 32 (c) 49 (d) none of these

if 1,omega,omega^(2),............omega^(n-1) are nth roots of unity,then (1-omega)(1-omega^(2))......(1-omega^(n-1)) equal to

If 1, omega, omega^2 ,…..,omega^(n-1) are the nth roots of unity, then (2- omega)(2-omega^2)….(2-omega^(n-1) ) equals

If omega is an imainary cube root of unity,then show that (1-omega+omega^(2))^(5)+(1+omega-omega^(2))^(5)=32