Home
Class 11
MATHS
If ((1+i)/(1-i))^m=1,then find the leas...

If `((1+i)/(1-i))^m=1,`then find the least integral value of m.

A

2

B

4

C

8

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If ((1+i)/(1-i))^(m)=1, then find the least positive integral value of m.

If((2+2i)/(2-2i))^(n)=1, find the least positive integral nalue of n

If ((2+2i)/(2-2i))^(n)=1 find the least positive integral of n.

If ((1+i)/(1-i))^(n) = -1, n in N , then least value of n is

If z=(1)/(2)(sqrt(3)-i) , then the least possible integral value of m such that (z^(101)+i^(109))^(106)=z^(m+1) is

1) Find the value of i^(i)

(tan^(-1)((1)/(3))+tan^(-1)((1)/(7))+tan^(-1)((1)/(13))+......+tan^(-1)((1)/(381)))=(m)/(n) where m,n in N, then find least value of (m+n)