Home
Class 11
MATHS
If alpha and beta are imaginary cube ro...

If `alpha and beta` are imaginary cube roots of unity, then `alpha^4+beta^4+1/(alphabeta)`=

A

3

B

0

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

if alpha and beta are imaginary cube root of unity then prove (alpha)^(4)+(beta)^(4)+(alpha)^(-1)*(beta)^(-1)=0

If a and b are imaginary cube roots of unity, then alpha^(n)+beta^(n) is equal to

(i) If alpha,beta be the imaginary cube root of unity, then show that alpha^(4)+beta^(4)+alpha^(-1)beta^(-1)=0

If alpha,beta are the complex cube roots of unity then alpha^(100)+beta^(100)+(1)/(alpha^(100)xx beta^(100))=

If alpha and beta are the complex cube roots of unity, then what is the vlaue of (1+alpha)(1+beta)(1+alpha^(2))(1+beta^(2)) ?

If alpha and beta are the roots of x^2-4x+3 then find the 1/alpha +1/ beta

If alpha, beta, gamma are cube roots of unity, then the value of |(e^(alpha),e^(2alpha),(e^(3alpha)-1)),(e^(beta),e^(2beta),(e^(3beta)-1)),(e^(gamma),e^(2gamma),(e^(3gamma)-1))|=