Home
Class 11
MATHS
A real root of the equation log4 {log2 (...

A real root of the equation `log_4 {log_2 (sqrt(x+8)-sqrtx)}=0` is

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

A real root of the equation log_(4){log_(2)(sqrt(x+8)-sqrt(x))}=0 is

The solution-set of the equation log_5log_2(sqrt(4x+2)+2sqrt2)=0 is ________ .

If the root of the equation log_(2)(x)-log_(2)(sqrt(x)-1)=2 is alpha, then the value of alpha^(log_(4)3) is (a) 1 (b) 2 (c) 3 (d) 4

the number of roots of the equation log_(3sqrt(x))x+log_(3x)(sqrt(x))=0 is

The number of roots of the equation log_(3sqrt(x))x+log_(3x)sqrt(x)=0 is 1(b)2(c)3(d)0

Find the sum of the squares of all the real solution of the equation 2log_((2+sqrt(3)))(sqrt(x^(2)+1)+x)+log_((2-sqrt(3)))(sqrt(x^(2)+1)-x)=3

The number of real roots of the equation log_(1//3)(1+sqrt(x))+log_(1//3)(1+x)=2 , is

Number of distinct real roots of the equation log_((x^(2)-3x+2))(log_((x^(3)-6x^(2)+11x))6)=0 is

log_(2)sqrt(x)+log_(2)sqrt(x)=4