Home
Class 11
MATHS
If alpha1, alpha2, alpha3, alpha4 are th...

If `alpha_1, alpha_2, alpha_3, alpha_4` are the roots of the equation `x^4+(2-sqrt3)x^2+2+sqrt3=0` then find the value of `(1-alpha_1)(1-alpha_2)(1-alpha_3)(1-alpha_4)`

A

1

B

4

C

`2 + sqrt(3)`

D

5

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha_(1),alpha_(2),alpha_(3),alpha_(4) are the roots of the equation x^(4)+(2-sqrt(3))x^(2)+2+sqrt(3)=0 then find the value of (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))(1-alpha_(4))

If alpha_(1) , alpha_(2) , alpha_(3) , alpha_(4) are the roots of the equation 3x^(4)-(l+m)x^(3)+2x+5l=0 and sum alpha_(1)=3 , alpha_(1)alpha_(2)alpha_(3)alpha_(4)=10 then (l,m)

If alpha,beta be the roots of the equation 3x^(2)+2x+1=0 ,then find value of ((1-alpha)/(1+alpha))^(3)+((1-beta)/(1+beta))^(3)

If alpha and beta be the roots of the equation x^(2)+3x+1=0 then the value of ((alpha)/(1+beta))^(2)+((beta)/(alpha+1))^(2)

If 1,alpha_(1),alpha_(2),………..,alpha_(n-1) are nk^(th) roots of unity, then the value of (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))……(1-alpha_(n-1)) is equal to

If alpha_1,alpha_2,alpha_3,alpha_4 be the roots of x^5-1 =0 then prove that (w-alpha_1)/(w^2-alpha_1).(w-alpha_2)/(w^2-alpha_2).(w-alpha_3)/(w^2-alpha_3).(w-alpha_4)/(w^2-alpha_4)=w where w is a nonreal complex cube root of unity.