Home
Class 11
MATHS
If (alpha+sqrtbeta) and (alpha-sqrtbeta)...

If `(alpha+sqrtbeta)` and `(alpha-sqrtbeta)`are the roots of the equation `x^2+px+q=0` where `alpha, beta, p` and `q` are real, then the roots of the equation `(p^2-4q)(p^2x^2+4px)-16q=0` are

A

`((1)/( alpha ) + (1)/(sqrt(beta))) and ((1)/(alpha )-( 1) sqrt(beta))`

B

`((1)/(sqrt(alpha ))+ (1)/(beta)) and ((1)/(sqrt(alpha))-(1)/( beta))`

C

`((1)/(sqrt(alpha)) + (1)/( sqrt((beta)) ))and ((1)/( sqrt(a)) - (1)/(sqrt(beta)))`

D

`(sqrt(a) + sqrt( beta)) and (sqrt(alpha)- sqrt(beta))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If (alpha+sqrt(beta)) and (alpha-sqrt(beta)) are the roots of the equation x^(2)+px+q=0 where alpha,beta,p and q are real,then the roots of the equation (p^(2)-4q)(p^(2)x^(2)+4px)-16q=0 are

If tan alpha tan beta are the roots of the equation x^(2)+px+q=0(p!=0) then

If alpha,beta are the roots of the equation x^(2)+px+q=0, then -(1)/(alpha),-(1)/(beta) are the roots of the equation.

If p,q are odd intergers,then the roots of the equation 2pX^(2)+(2p+q)X+q=0 are :