Home
Class 11
MATHS
If alpha , beta and gamma are the roots ...

If `alpha , beta and gamma` are the roots of equation `x^3 - 8x + 8 =0 ` , then ` sum alpha^2 and sum (1)/(alphabeta)` are respectively

A

0 and -16

B

16 and 8

C

`-16 and 0`

D

`16 and 0`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta and gamma are the roots of equation x^(3)-3x^(2)+x+5=0 then y=sum alpha^(2)+alpha beta gamma satisfies the equation

If alpha,beta,gamma,delta are the roots of the equation 3x^(4)-8x^(3)+2x^(2)-9=0 then sum alpha beta=

If alpha, beta, gamma are roots of equation x^(3)-x-1=0 then the value of sum(1+alpha)/(1-alpha) is :

If alpha,beta,gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 then the value of sum alpha^(2)beta=

If alpha ,beta, gamma are the roots of 2x^(3)-2x-1=0 then (sum alpha beta)^(2)

If alpha,beta and gamma are the roots of the equation x^(3)-3x+1=0 then (A) prod(alpha+1)=-3 (B) sum(alpha+1)=0(C)sum(alpha+1)(beta+1)=-3(D)sum alpha^(2)=6

If alpha,beta,gamma are the roots of the equation 2x^(3)x^(2)+x-1=0 then alpha^(2)+beta^(2)+gamma^(2)=

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of (alphabeta)/(gamma)+(betagamma)/(alpha)+(gammaalpha)/(beta) is equal to

If alpha, beta and gamma are the roots of the equation x^(3)+x+2=0 , then the equation whose roots are (alpha- beta)(alpha-gamma), (beta-gamma)(beta-gamma) and (gamma-alpha)(gamma-alpha) is