Home
Class 11
MATHS
If alpha, beta are the roots of x^(2)-a(...

If `alpha`, `beta` are the roots of `x^(2)-a(x-1)+b=0` ,then the value of `(1)/(alpha^(2)-a alpha)+(1)/(beta^(2)-a beta)+(2)/(a+b)` is equal to

A

`(4)/(a+b)`

B

`(1)/(a+b)`

C

0

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of x^(2)-a(x-1)+b=0 then find the value of 1/(alpha^(2)-a alpha)+1/(beta^(2)-beta)+2/a+b

if alpha and beta are the roots of ax^(2)+bx+c=0 then the value of {(1)/(a alpha+b)+(1)/(a beta+b)} is

If alpha and beta are the roots of equation x^(2)-a(x+1)-b=0 where a,beR-{0} and a+b!=0 then the value of (1)/(alpha^(2)-a alpha)+(1)/(beta^(2)-a beta)-(2)/(a+b)

If alpha and beta are the roots of 4x^(2) + 3x +7 =0 then the value of 1/alpha + 1/beta is

If alpha, beta are the roots of equation 3x^(2)-4x+2=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha, beta are roots of x^(2)-2x-1=0 , then value of 5alpha^(4)+12beta^(3) is

If alpha and beta are the roots of x^(2)-p(x+1)-c=0, then the value of (alpha^(2)+2 alpha+1)/(alpha^(2)+2 alpha+c)+(beta^(2)+2 beta+1)/(beta^(2)+2 beta+c)