Home
Class 11
MATHS
1/(2.5)+1/(5.8)+1/(8.11)+.... n terms=...

`1/(2.5)+1/(5.8)+1/(8.11)+.... n terms=`

A

`(n)/(6n-4)`

B

`(n)/(6n+3)`

C

`(n)/(6n+4)`

D

`(n+1)/(6n+4)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(2.5)+(1)/(5.8)+(1)/(8.11)+.... nterms =

Sum the series upto n terms (1)/(2.5)+(1)/(5.8)+(1)/(8.11)+...

Prove the following by using the principle of mathematical induction for all n in Nvdots(1)/(2.5)+(1)/(5.8)+(1)/(8.11)+...+(1)/((3n-1)(3n+2))=(n)/((6n+4))=(n)/((6n+4))

Prove the following by the principle of mathematical induction: (1)/(2.5)+(1)/(5.8)+(1)/(8.11)++(1)/((3n-1)(3n+2))=(n)/(6n+4)

lim_(nrarroo)((1)/(5))^((log_(sqrt5)((1)/(4)+(1)/(8)+(1)/(16)+……."n terms")) equals

2.5+3.8+4.11+.....+ upto n terms =n(n^(2)+4n+5), n in N

Find the sum of n terms of the series (1)/((2 xx 5))+(1)/((5xx8))+(1)/((8xx11))+... .

If (3+5+7+ . . . .+"n terms")/(5+8+11+ . . .. +"10 terms")=7 , then the value of n, is

Sum of 1/(sqrt(2)+sqrt(5))+1/(sqrt(5)+sqrt(8))+1/(sqrt(8)+sqrt(11))+1/(sqrt(11)+sqrt(14))+..to n terms= (A) n/(sqrt(3n+2)-sqrt(2)) (B) 1/3 (sqrt(2)-sqrt(3n+2) (C) n/(sqrt(3n+2)+sqrt(2)) (D) none of these