Home
Class 11
MATHS
n^n((n+1)/2)^(2n)l s(n in N)...

`n^n((n+1)/2)^(2n)l s(n in N)`

A

Less than `((n+1)/(2))^(3)`

B

Greater than `((n+1)/(2))^(3)`

C

Less than `(n!)^(3)`

D

Greater than `(n!)^(3)`

Text Solution

Verified by Experts

The correct Answer is:
B, D
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum S_(n) where T_(n) = (-1)^(n) (n^(2) + n +1)/( n!) is

if S_(n)=1^(2)+2^(2)++n^(2),n in N then 23^(2)+25^(2)+............+47^(2)=

For U_(n)=int_(0)^(1)x^(n)(2-x)^(n)dx;V_(n)=int_(0)^(1)x^(n)(1-x)^(n)dxn in N which of the following statement(s) is/are true? (a) U_(n)=2^(n)V_(n)( b) U_(n)=2^(-n)V_(n)(c)U_(n)=2^(2n)V_(n)(d)V_(n)=2^(-2n)U_(n)

The coefficient of 1/x in the expansion of (1+x)^(n)(1+1/x)^(n) is (n!)/((n-1)!(n+1)!) b.((2n)!)/((n-1)!(n+1)!) c.((2n-1)!(2n+1)!)/((2n-1)!(2n+1)!) d.none of these

underset(n to oo)lim ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1))

lim_(n rarr oo)((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is

If U_(n)=(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))^(2).............(1+(n^(2))/(n^(2)))^(n) m then lim_(n to oo)(U_(n))^((-4)/(n^(2))) is equal to

If l_(n)=intcos^(n)xdx, prove that l_(n)=(1)/(n)(cos^(n-1)xsinx)+((n-1)/(n))l_(n-2) .