Home
Class 11
MATHS
C0-(C1)/2+(C2)/3-......+(-1)^n(Cn)/(n+1)...

`C_0-(C_1)/2+(C_2)/3-......+(-1)^n(C_n)/(n+1)=1/(n+1)`

A

n

B

1/n

C

`(1)/(n+1)`

D

`(1)/(n-1)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

C0-(C1)/(2)+(C2)/(3)-............+(-1)^(n)(Cn)/(n+1)=(1)/(n+1)

Prove that C_0+(C_1)/(2)+(C_2)/(3)+....+(C_n)/(n+1)=(2^(n+1)-1)/(n+1)

(C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+.........(C_(n))/(n+1)=

Prove that (i) C_(1)+2C_(2)+3C_(3)+……+nC_(n)=n.2^(n+1) (ii) C_(0)+(C_(1)/(2)+(C_(2))/(3)+….+(C_(n))/(n+1)=(2^(n+1)-1)/(n+1)

(C_(0))/(1.2)+(C_(1))/(2.3)+(C_(2))/(3.4)+......*(C_(n))/((n+1)(n+2))=

If (1+x)^n = C_0 + C_1x + C_2x^2 + ………. + C_n x^n , prove that : C_0 + (C_1)/(2) + (C_2)/(3) + ……. + (C_n)/(n+1) = (2^(n+1) -1)/(n+1)

(C_(1))/(C_(0))+2(C_(2))/(C_(1))+3(C_(3))/(C_(2))+.........+n(C_(n))/(C_(n-1))=(n(n+1))/(2)

If C_(0),C_(1),C_(2),C_(3), . . .,C_(n) be binomial coefficients in the expansion of (1+x)^(n) , then Q. The value of the expression C_(0)-2C_(1)+3C_(2)-. . . .+(-1)^(n)(n+1)C_(n) is equal to

p*C_(0)+p^(2)(C_(1))/(2)+p^(3)(C_(2))/(3)+...+p^(n+1)*(C_(n))/(n+1)=((p+1)^(n+1)-1)/(n+1)