Home
Class 11
MATHS
C0/1+C1/2+C2/3+...............Cn/(n+1)=...

`C_0/1+C_1/2+C_2/3+...............C_n/(n+1)=`

A

`(2^(n))/(n+1)`

B

`(2^(n)-1)/(n+1)`

C

`(2^(n+1)-1)/(n+1)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

C_(0)-(C_(1))/(2)+(C_(2))/(3)-............(-1)^(n)(C_(n))/(n+1)=(1)/(n+1)

Prove that C_0+(C_1)/(2)+(C_2)/(3)+....+(C_n)/(n+1)=(2^(n+1)-1)/(n+1)

C0-(C1)/(2)+(C2)/(3)-............+(-1)^(n)(Cn)/(n+1)=(1)/(n+1)

C_(0)+2.C_(1)+3.C_(2)+............+(n+1)*C_(n)=

(C_(1))/(C_(0))+2(C_(2))/(C_(1))+3(C_(3))/(C_(2))+.........+n(C_(n))/(C_(n-1))=(n(n+1))/(2)

C_ (0) ^ (2) + 2C_ (1) ^ (2) + 3.C_ (2) ^ (2) + ............ + (n + 1) C_ (n ) ^ (2) =

Statement-1: (C_(0))/(2.3)- (C_(1))/(3.4) +(C_(2))/(4.5)-.............+............+(-1)^(n) (C_(n))/((n+2)(n+3))= (1)/((n+1)(n+2)) Statement-2: (C_(0))/(k)- (C_(1))/(k+1) +(C_(2))/(k+3)+............+(-1)^(n) (C_(n))/(k+n)=int_(0)^(1)x^(k-1) (1 - x)^(n) dx

If (1+x)^n = C_0 + C_1x + C_2x^2 + ………. + C_n x^n , prove that : C_0 + (C_1)/(2) + (C_2)/(3) + ……. + (C_n)/(n+1) = (2^(n+1) -1)/(n+1)