Home
Class 11
MATHS
If S(1)= sum(r=1)^(n) r , S(2) = sum(r=1...

If `S_(1)= sum_(r=1)^(n) r , S_(2) = sum_(r=1)^(n) r^(2),S_(3) = sum_(r=1)^(n)r^(3)` then : ` lim_(n to oo ) (S_(1)(1+(S_(8))/8))/((S_(2))^(2))` =

A

`3//32`

B

`3//64`

C

`9//32`

D

`9//64`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

If sum_(s=1)^(n){sum_(r=1)^(s)r}=an^(3)+bn^(2)+Cn then

If S_(n)=sum_(r=0)^(n)(1)/(nC_(r)) and sum_(r=0)^(n)(r)/(nC_(r)), then (t_(n))/(S_(n))=

If f(n)=sum_(s=1)^(n)sum_(r=s)^(n)C_(r)^(r)C_(s), then f(3)=

If lim_(n rarr oo)(sum_(r=1)^(n)sqrt(r)sum_(r=1)^(n)(1)/(sqrt(r)))/(sum_(r=1)^(n)r)=(k)/(3) then the value of k is

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

If S_(n)=sum_(r=1)^(n)t_(r)=(1)/(6)n(2n^(2)+9n+13), then sum_(r=1)^(oo)(1)/(r*sqrt(t)) equals