Home
Class 11
MATHS
If C(0),C(1),C(2),… C(15) are the binom...

If `C_(0),C_(1),C_(2),… C_(15)` are the binomial coefficients in the expansion of `(1+x)^(15)`, then
`(C_(1))/(C_(0)) +2(C_(2))/(C_(1)) +3(C_(3))/(C_(2))+…+15(C_(15))/(C_(14))=`

A

60

B

120

C

64

D

124

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If C_(0), C_(1), C_(2),……, C_(20) are the binomial coefficients in the expansion of (1+x)^(20) , then the value of (C_(1))/(C_(0))+2(C_(2))/(C_(1))+3(C_(3))/(C_(2))+……+19(C_(19))/(C_(18))+20(C_(20))/(C_(19)) is equal to (where C_(r) represetns .^(n)C_(r) )

(C_(1))/(C_(0))+(2.C_(2))/(C_(1))+(3.C_(3))/(C_(2))+ . . .+(20.C_(20))/(C_(19))=

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =

If C_(0),C_(1),C_(2),…,C_(n) are the binomial coefficients in the expansion of (1+x)^(n)*n being even, then C_(0)+(C_(0)+C_(1))+(C_(0)+C_(1)+C_(2))+….+(C_(0)+C_(1)+C_(2)+…+C_(n-1)) is equal to :

If C_(0),C_(1),C_(2)...,C_(n), denote the binomial coefficients in the expansion of (1+x)^(n), then (C_(1))/(2)+(C_(3))/(4)+(C_(5))/(6)+...... is equal to

If C_(0), C_(1), C_(2),..., C_(n) are binomial coefficients in the expansion of (1 + x)^(n), then the value of C_(0) - (C_(1))/(2) + (C_(2))/(3) - (C_(3))/(4) +...+ (-1)^(n) (C_(n))/(n+1) is

If C_(0),C_(1),C_(2),.........,C_(n) denote the binomial coefficients in the expansion of (1+1)^(n), then sum_(0<=r