Home
Class 11
MATHS
sum(k =1)^(n) k(1 + 1/n)^(k -1) =...

`sum_(k =1)^(n) k(1 + 1/n)^(k -1)` =

A

`n(n-1)`

B

`n(n+1)`

C

`n^(2)`

D

`(n+1)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(k=1)^n k^3=

sum_(k=1)^(oo)k(1-(1)/(n))^(k-1)=a*n(n-1)bn(n+1)c*n^(2)d.(n+1)^(2)

sum_(k=1)^(2n+1)(-1)^(k-1)k^(2)=

Value of L = lim_ (n rarr oo) (1) / (n ^ (4)) [1sum_ (k = 1) ^ (n) k + 2sum_ (k = 1) ^ (n-1) k + 3sum_ ( k = 1) ^ (n-2) k + ...... + n.1] is

sum_(k=1)^(k=infty) k( 1+ (1)/(n))^(k-1)=

The limit of (1)/(n ^(4)) sum _(k =1) ^(n) k (k +2) (k +4) as n to oo is equal to (1)/(lamda), then lamda =

L = lim_ (n rarr oo) (1) / (n ^ (4)) [1.sum_ (k = 1) ^ (n) k + 2 * sum_ (k = 1) ^ (n-1) k + 3 * sum_ (k = 1) ^ (n-2) k + ......... + n.1]

lim_ (n rarr oo) sum_ (k = 1) ^ (n) (k + 1) / ((2k + 1) ^ (2) (2k + 3) ^ (2)) equals