Home
Class 11
MATHS
Given that u(n+1)=3un-2u(n-1), and u0=2 ...

Given that `u_(n+1)=3u_n-2u_(n-1),` and `u_0=2 ,u_(1)=3`, then prove that `u_n=2^(n)+1` for all positive integer of `n`

A

`2^(n)-1`

B

`2^(n)+1`

C

0

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If u_(0) = 8 , u_(1) = 3 , u_(2) = 12 , u_(3) = 51 , then the value of Delta^(3) u_(0) is

If U_(n)=(sqrt(3)+1)^(2n)+(sqrt(3)-1)^(2n), then prove that U_(n+1)=8U_(n)-4U_(n-1)

If u_n = 2cos n theta then u_1u_n - u_(n-1) is equal to

If u_(n)=int(log x)^(n)dx, then u_(n)+nu_(n-1) is equal to :

If U_(n)=2cos n theta, then U_(1)U_(n)-U_(n-1) is equal to -

Find sum_(n=1)^n u_n if u_n=sum_(n=0)^n1/2^n .

If u_(n) = sin ^(n) theta + cos ^(n) theta, then 2 u_(6) -3 u_(4) is equal to

Consider the sequence u_(n)=sum_(r=1)^(n)(r)/(2^(r)),n>=1 then the lim it_(n rarr oo)u_(n)