Home
Class 11
MATHS
Let n be an odd integer . If sinntheta=s...

Let n be an odd integer . If `sinntheta=sum_(r=0)^nb_rsin^rtheta` for all real `theta` is
(a) `b_0 = 1, b_1 = 3`
(b) `b_0 = 0, b_1 = n`
(c) `b_0 = –1, b_1 = n`
(d) `b_0 = 0, b_1 = n^2 – 3n + 3`

A

`b_(0)= 1, b_(1)=3`

B

`b_(0)= 0, b_(1)= n`

C

`b_(0)= -1, b_(1)= n`

D

`b_(0)= 0, b_(1)= n^(2)- 3n+3`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let n be an odd integer.If sin n theta=sum_(r=0)^(n)b_(r)sin^(r)theta for all real theta is

Q. Let n be an add integer if sin ntheta-sum_(r=0)^n(b_r)sin^rtheta, for every value of theta then ---

If a+b=1, then sum_(n=0)^(n)C(n,r)a^(r)b^(n-r) is equal to '

If a\ a n d\ b are two numbers such that a b\ =\ 0 , then (a) a\ =\ 0\ a n d\ b\ =\ 0 (b) a\ =\ 0\ or\ b\ =\ 0 (c) a\ =\ 0\ a n d\ b!=0 (d) b\ =\ 0\ a n d\ a!=0

Let S_n=sum_(r=0)^oo 1/n^r and sum_(n=1)^k (n-1)S_n = 5050 then k= (A) 50 (B) 505 (C) 100 (D) 55

sum_(r=0)^(2n)a_(r)(x-2)^(r)=sum_(r=0)^(2n)b_(r)(x-3)^(r) and a_(k)=1 for all k>=n, then show that b_(n)=2n+1C_(n+1)

Find the sum upto n terms of the series 0.b+0.b b+0.b b b +0.b b b b+"......",AA " b" in N " and "1 le b le 9.

sum_(i=0i0)^(2n)a_(r)(x-1)^(r)=sum_(r=0)^(2n)b_(r)(x-2)^(r) and b_(r)=(-1)^(r-n) for all r<=n, then a_(n)=