Home
Class 11
MATHS
If n is ann integer greater than 1, then...

If n is ann integer greater than 1, then
`a-^(n)C_(1)(a-1)+.^(n)C_(2)(a-2)- . . .+(-1)^(n)(a-n)=`

A

a

B

0

C

`a^(2)`

D

`2^(n)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If n is an odd number greater than 1, then n(n^(2)-1) is

If n in N, n > 1 , then value of E= a - ""^(n)C_(1) (a-1) + ""^(n)C_(2) (a -2)+ ... + (- 1)^(n) (a-n) (""^(n)C_(n)) is

If n is an odd integer greater than or equal to 1, then the value of n^(3)-(n-1)^(3)+(n-1)^(3)-(n-1)^(3)+...+(-1)^(n-1)1^(3)

if n>=2 then (a-1)c_(1)-(a-2)c_(2)+(a-3)c_(3)-.........(-1)^(n-1)(a-n)c_(n)=

If n is a positvie integers, the value of E=(2n+1).^(n)C_(0)+(2n-1).^(n)C_(1)+(2n-3)^(n)C_(2)+………+1. ^(n)C_(n)2 is

Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) + C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

Prove that ^nC_(0)^(n)C_(0)-^(n+1)C_(1)^(n)C_(1)+^(n+2)C_(2)^(n)C_(2)-...=(-1)^(n)